The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae Chlorella vulgaris and Monoraphidium contortum
Abstract
:1. Introduction
2. Methods
2.1. Cultivation of the Microalgae
2.2. Determination of Algae Biomass Concentration
2.3. Dissolved Organic Carbon (DOC) Measurement
2.4. Membranes
2.5. Membrane Test Unit
2.6. Experimental Procedures
2.7. Measurement of Resistance
2.8. Statistical Analysis
3. Results
3.1. Assessment of Flux
3.2. Analysis of Fouling Resistance
3.3. Mass Balance of DOC
4. Discussion
4.1. Flux
4.2. Resistance
4.3. Effect of Microalgae Biomass and DOC
5. Conclusions
- UF membrane showed higher permeate flux than MF membrane.
- Cake formation was the main fouling mechanism of the MF membrane.
- Irreversible fouling was higher in UF than MF.
- Higher fluxes in the steady-state phase were shown for M. contortum than C. vulgaris.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hallenbeck, P.C.; Grogger, M.; Mraz, M.; Veverka, D. Solar biofuels production with microalgae. Appl. Energy 2016, 179, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Vermuë, M.; Eppink, M.; Wijffels, R.; Van-Den, B.C. Multi-product microalgae biorefineries: From concept towards reality. Trends Biotechnol. 2018, 36, 216–227. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; García-Depraect, O. Membrane-based harvesting processes for microalgae and their valuable-related molecules: A Review. Membranes 2021, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Nędzarek, A.; Drost, A.; Harasimiuk, F.; Tórz, A.; Bonisławska, M. Application of ceramic membranes for microalgal biomass accumulation and recovery of the permeate to be reused in algae cultivation. J. Photochem. Photobiol. B Biol. 2015, 153, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Laraib, N.; Hussain, A.; Javid, A.; Noor, T.; Ahmad, Q.; Chaudhary, A.; Manzoor, M.; Akmal, M.; Bukhari, S.M.; Ali, W.; et al. Recent trends in microalgal harvesting: An overview. Environ. Dev. Sustain. 2021, 24, 8691–8721. [Google Scholar] [CrossRef]
- Bonisławska, M.; Nędzarek, A.; Rybczyk, A. Assessment of the use of precipitating agents and ceramic membranes for treatment of effluents with high concentrations of nitrogen and phosphorus from recirculating aquaculture systems. Aquac. Res. 2019, 50, 1248–1256. [Google Scholar] [CrossRef]
- Bilad, M.R.; Arafat, H.A.; Vankelecom, I.F.J. Membrane technology in microalgae cultivation and harvesting: A review. Biotechnol. Adv. 2014, 32, 1283–1300. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. A review of membrane fouling and its control in algal-related membrane processes. Bioresour. Technol. 2018, 264, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, L.; Zhang, H.; Li, C.; Zhang, X.; Hu, Q. A novel low cost microalgal harvesting technique with coagulant recovery and recycling. Bioresour. Technol. 2018, 266, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.K.; Garg, S.; Li, Y.; Malekizadeh, A.; Schenk, P.M. Critical analysis of current microalgae dewatering techniques. Biofuels 2013, 4, 397–407. [Google Scholar] [CrossRef]
- Soydemir, G.; Gurol, M.D.; Hocaogīu, S.M.; Karagündüz, A. Fouling mechanisms of membrane filtration of mixed microalgal biomass grown in wastewater. Water Sci. Technol. 2020, 81, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Nędzarek, A.; Drost, A.; Tórz, A.; Bogusławska-Wąs, E. The use of a micro- and ultrafiltration cascade system for the recovery of protein, fat, and purified brine from brine used for herring marination. Food Bioprod. Process. 2017, 106, 82–90. [Google Scholar] [CrossRef]
- Marecka-Migacz, A.; Mitkowski, P.T.; Nędzarek, A.; Różański, J.; Szaferski, W. Effect of pH on total volume membrane charge density in the nanofiltration of aqueous solutions of nitrate salts of heavy metals. Membranes 2020, 10, 235. [Google Scholar] [CrossRef]
- Babel, S.; Takizawa, S. Microfiltration membrane fouling and cake behavior during algae filtration. Desalination 2010, 261, 46–51. [Google Scholar] [CrossRef]
- Elcik, H.; Cakmakci, M.; Ozkaya, B. The fouling effects of microalgal cells on crossflow membrane filtration. J. Membr. Sci. 2016, 499, 116–125. [Google Scholar] [CrossRef]
- Monte, J.; Sá, M.; Galinha, C.F.; Costa, L.; Hoekstra, H.; Brazinha, C.; Crespo, J.G. Harvesting of Dunaliella salina by membrane filtration at pilot scale. Sep. Purif. Technol. 2018, 190, 252–260. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Lozano, P.; Ouattarac, A.; Elcik, H. Pilot-scale microalgae harvesting with ceramic microfiltration modules: Evaluating the effect of operational parameters and membrane configuration on filtration performance and membrane fouling. J. Chem. Technol. Biotechnol. 2021, 96, 603–612. [Google Scholar] [CrossRef]
- Bilad, M.R.; Azizo, A.S.; Wirzal, M.D.H.; Jia Jia, L.; Putra, Z.A.; Nordin, N.A.H.M.; Mavukkandy, M.O.; Jasni, M.J.F.; Yusoff, A.R.M. Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. J. Environ. Manag. 2018, 223, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.N.A.W.; Nawi, N.I.M.; Samsuri, S.; Bilad, M.R.; Khan, A.L.; Hunaepi, H.; Jaafar, J.; Lam, M.K. Ultra low-pressure filtration system for energy efficient microalgae filtration. Heliyon 2021, 7, e07367. [Google Scholar] [CrossRef]
- Ortiz Tena, F.; Ranglová, K.; Kubač, D.; Steinweg, C.; Steinweg, C.; Thomson, C.; Masojidek, J.; Posten, C. Characterization of an aerated submerged hollow fiber ultrafiltration device for efficient microalgae harvesting. Eng. Life Sci. 2021, 21, 607–622. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, L.; Maleki, E.; Liao, B.-Q.; Lin, H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Res. 2019, 44, 101686. [Google Scholar] [CrossRef]
- Purnima, M.; Arul Manikandan, N.; Pakshirajan, K.; Pugazhenthi, G. Recovery of microalgae from its broth solution using kaolin based tubular ceramic membranes prepared with different binders. Sep. Purif. Technol. 2020, 250, 117212. [Google Scholar] [CrossRef]
- Cheryan, M. Ultrafiltration and Microfiltration Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1998; p. 552. [Google Scholar] [CrossRef]
- Qu, F.; Liang, H.; Zhou, J.; Nan, J.; Shao, S.; Zhang, J.; Li, G. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 2014, 449, 58–66. [Google Scholar] [CrossRef]
- Yu, Z.; Chu, H.; Xiao, S.; Jiang, S.; Yang, L.; Zhang, Y.; Zhou, X. Simulation of cake layer topography in heterotrophic microalgae harvesting based on interface modified diffusion-limited-aggregation (IMDLA) and its implications for membrane fouling control. J. Membr. Sci. 2021, 620, 118837. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Mat Yasin, N.H.; Derek, C.J.C.; Lim, J.K. Crossflow microfiltration of microalgae biomass for biofuel production. Desalination 2012, 302, 65–70. [Google Scholar] [CrossRef]
- Liu, B.; Qu, F.; Liangz, H.; Van der Bruggen, B.; Cheng, X.; Yu, H.; Xu, G.; Li, G. Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection. Water Res. 2017, 112, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Drexler, I.L.C.; Yeh, D.H. Membrane applications for microalgae cultivation and harvesting: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 487–504. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, L.; Roddick, F.A. Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. J. Membr. Sci. 2013, 425–426, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Morineau-Thomas, O.; Jaouen, P.; Legentilhomme, P. The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum): Advantage of a swirling decaying flow. Bioprocess Biosyst. Eng. 2002, 25, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Cao, H.; Ma, Q.; Shi, X.; Zhang, X.; Zhang, W. Microalgae filtration using electrochemically reactive ceramic membrane: Filtration performances, fouling kinetics and foulant layer characteristics. Environ. Sci. Technol. 2020, 54, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Ghosh, S.; Majumdar, S. Energy efficient harvesting of Arthrospira sp. using ceramic membranes: Analyzing the effect of membrane pore size and incorporation of flocculant as fouling control strategy. J. Chem. Technol. Biotechnol. 2018, 93, 1085–1096. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Y.; Zhao, F.; Yu, Z.; Zhou, X.; Chu, H. Impact of transmembrane pressure (TMP) on membrane fouling in microalgae harvesting with a uniform shearing vibration membrane system. Algal Res. 2018, 35, 613–623. [Google Scholar] [CrossRef]
- Sun, X.; Wang, C.; Tong, Y.; Wang, W.; Wei, J. A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res. 2013, 2, 437–444. [Google Scholar] [CrossRef]
- Wang, L.; Pan, B.; Gao, Y.; Li, C.; Ye, J.; Yang, L.; Chen, Y.; Hu, Q.; Zhang, X. Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. J. Clean. Prod. 2019, 21, 83–95. [Google Scholar] [CrossRef]
Membrane Type | Microalgae | Initial Flux | Steady State Flux * | DOCF | DOCR | DOCP | MBF | MBR |
---|---|---|---|---|---|---|---|---|
L m−2 h−1 | mg L−1 | mg L−1 | ||||||
1.4 μm | Cv | 2004 (±49) | 88 (±2) | 14.1 (±1.2) | 29.5 (±2.4) | 4.8 (±0.5) | 161 (±8) | 490 (±14) |
Mc | 1960 (±73) | 105 (±7) | 12.7 (±0.8) | 25.0 (±3.0) | 5.3 (±0.8) | 157 (±10) | 505 (±18) | |
50 kDa | Cv | 561 (±26) | 123 (±5) | 14.4 (±1.1) | 38.3 (±3.8) | 1.9 (±0.1) | 164 (±6) | 522 (±10) |
Mc | 573 (±16) | 139 (±15) | 12.8 (±0.9) | 33.4 (±2.8) | 2.0 (±0.2) | 160 (±9) | 527 (±12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nędzarek, A.; Mitkowski, P.T. The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae Chlorella vulgaris and Monoraphidium contortum. Energies 2022, 15, 3745. https://doi.org/10.3390/en15103745
Nędzarek A, Mitkowski PT. The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae Chlorella vulgaris and Monoraphidium contortum. Energies. 2022; 15(10):3745. https://doi.org/10.3390/en15103745
Chicago/Turabian StyleNędzarek, Arkadiusz, and Piotr Tomasz Mitkowski. 2022. "The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae Chlorella vulgaris and Monoraphidium contortum" Energies 15, no. 10: 3745. https://doi.org/10.3390/en15103745
APA StyleNędzarek, A., & Mitkowski, P. T. (2022). The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae Chlorella vulgaris and Monoraphidium contortum. Energies, 15(10), 3745. https://doi.org/10.3390/en15103745