A Two-Stage Biogas Desulfurization Process Using Cellular Concrete Filtration and an Anoxic Biotrickling Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Operating Parameters
2.4. Analysis of Microbial Community
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources 2018. Available online: http://data.europa.eu/eli/dir/2018/2001/oj/eng (accessed on 6 May 2022).
- Miltner, M.; Makaruk, A.; Harasek, M. Review on Available Biogas Upgrading Technologies and Innovations towards Advanced Solutions. J. Clean. Prod. 2017, 161, 1329–1337. [Google Scholar] [CrossRef]
- Andriani, D.; Rajani, A.; Kusnadi; Santosa, A.; Saepudin, A.; Wresta, A.; Atmaja, T.D. A Review on Biogas Purification through Hydrogen Sulphide Removal. IOP Conf. Ser. Earth Environ. Sci. 2020, 483, 012034. [Google Scholar] [CrossRef]
- Golmakani, A.; Ali Nabavi, S.; Wadi, B.; Manovic, V. Advances, Challenges, and Perspectives of Biogas Cleaning, Upgrading, and Utilisation. Fuel 2022, 317, 123085. [Google Scholar] [CrossRef]
- Peu, P.; Picard, S.; Diara, A.; Girault, R.; Béline, F.; Bridoux, G.; Dabert, P. Prediction of Hydrogen Sulphide Production during Anaerobic Digestion of Organic Substrates. Bioresour. Technol. 2012, 121, 419–424. [Google Scholar] [CrossRef]
- Piechota, G.; Igliński, B. Biomethane in Poland—Current Status, Potential, Perspective and Development. Energies 2021, 14, 1517. [Google Scholar] [CrossRef]
- Choudhury, A.; Shelford, T.; Felton, G.; Gooch, C.; Lansing, S. Evaluation of Hydrogen Sulfide Scrubbing Systems for Anaerobic Digesters on Two U.S. Dairy Farms. Energies 2019, 12, 4605. [Google Scholar] [CrossRef] [Green Version]
- Piechota, G. Removal of Siloxanes from Biogas Upgraded to Biomethane by Cryogenic Temperature Condensation System. J. Clean. Prod. 2021, 308, 127404. [Google Scholar] [CrossRef]
- Piechota, G. Multi-Step Biogas Quality Improving by Adsorptive Packed Column System as Application to Biomethane Upgrading. J. Environ. Chem. Eng. 2021, 9, 105944. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyaei, M.A.; Esmaeilion, F.; El Haj Assad, M.; Hajilounezhad, T.; Jamali, D.H.; Hmida, A.; et al. A Critical Review of Biogas Production and Usage with Legislations Framework across the Globe. Int. J. Environ. Sci. Technol. 2022, 19, 3377–3400. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C. A Review of Recent Developments in Application of Low Cost Natural Materials in Purification and Upgrade of Biogas. Renew. Sustain. Energy Rev. 2021, 145, 111081. [Google Scholar] [CrossRef]
- Abatzoglou, N.; Boivin, S. A Review of Biogas Purification Processes. Biofuels Bioprod. Bioref. 2009, 3, 42–71. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, D.; Colón, J.; Ramírez, M. Life Cycle Assessment of Biofiltration. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 89–108. ISBN 978-0-12-819064-7. [Google Scholar]
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Rouxel, F.; Le Cloirec, P.; Dumont, E. Biofiltration of High Concentration of H2S in Waste Air under Extreme Acidic Conditions. New Biotechnol. 2016, 33, 136–143. [Google Scholar] [CrossRef]
- López, L.R.; Mora, M.; Van der Heyden, C.; Baeza, J.A.; Volcke, E.; Gabriel, D. Model-Based Analysis of Feedback Control Strategies in Aerobic Biotrickling Filters for Biogas Desulfurization. Processes 2021, 9, 208. [Google Scholar] [CrossRef]
- Krayzelova, L.; Bartacek, J.; Díaz, I.; Jeison, D.; Volcke, E.I.P.; Jenicek, P. Microaeration for Hydrogen Sulfide Removal during Anaerobic Treatment: A Review. Rev. Environ. Sci. Biotechnol. 2015, 14, 703–725. [Google Scholar] [CrossRef]
- Mannucci, A.; Munz, G.; Mori, G.; Lubello, C. Biomass Accumulation Modelling in a Highly Loaded Biotrickling Filter for Hydrogen Sulphide Removal. Chemosphere 2012, 88, 712–717. [Google Scholar] [CrossRef]
- Gabaldón, C.; San-Valero, P.; Quijano, G. Current Challenges and Perspectives in Gas Fluxes Biotreatment. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 5–27. ISBN 978-0-12-819064-7. [Google Scholar]
- Montebello, A.M.; Baeza, M.; Lafuente, J.; Gabriel, D. Monitoring and Performance of a Desulphurizing Biotrickling Filter with an Integrated Continuous Gas/Liquid Flow Analyser. Chem. Eng. J. 2010, 165, 500–507. [Google Scholar] [CrossRef]
- Rodriguez, G.; Dorado, A.D.; Fortuny, M.; Gabriel, D.; Gamisans, X. Biotrickling Filters for Biogas Sweetening: Oxygen Transfer Improvement for a Reliable Operation. Process Saf. Environ. Prot. 2014, 92, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Deshusses, M.A. Performance of a Monolith Biotrickling Filter Treating High Concentrations of H2S from Mimic Biogas and Elemental Sulfur Plugging Control Using Pigging. Chemosphere 2017, 186, 790–797. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Le Cloirec, P.; Dumont, E. Hydrogen Sulfide Removal from a Biogas Mimic by Biofiltration under Anoxic Conditions. J. Environ. Chem. Eng. 2017, 5, 5617–5623. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Rouxel, F.; Le Cloirec, P.; Dumont, E. Biofiltration of H2S in Air—Experimental Comparisons of Original Packing Materials and Modeling. Biochem. Eng. J. 2016, 112, 153–160. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Couvert, A.; Amrane, A.; Le Cloirec, P.; Dumont, E. Removal of Hydrogen Sulfide in Air Using Cellular Concrete Waste: Biotic and Abiotic Filtrations. Chem. Eng. J. 2017, 319, 268–278. [Google Scholar] [CrossRef]
- Lebrun, G.; Couvert, A.; Dumont, É. H2S Removal Using Cellular Concrete Waste as Filtering Material: Reactions Identification and Performance Assessment. J. Environ. Chem. Eng. 2019, 7, 102967. [Google Scholar] [CrossRef] [Green Version]
- Madigou, C.; Lê Cao, K.-A.; Bureau, C.; Mazéas, L.; Déjean, S.; Chapleur, O. Ecological Consequences of Abrupt Temperature Changes in Anaerobic Digesters. Chem. Eng. J. 2019, 361, 266–277. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, P.-Y. Conservative Fragments in Bacterial 16S RRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE 2009, 4, e7401. [Google Scholar] [CrossRef] [Green Version]
- Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Huynh Nhut, H.; Le Thi Thanh, V.; Tran Le, L. Removal of H2S in Biogas Using Biotrickling Filter: Recent Development. Process Saf. Environ. Prot. 2020, 144, 297–309. [Google Scholar] [CrossRef]
- Khanongnuch, R.; Di Capua, F.; Lakaniemi, A.-M.; Rene, E.R.; Lens, P.N.L. H2S Removal and Microbial Community Composition in an Anoxic Biotrickling Filter under Autotrophic and Mixotrophic Conditions. J. Hazard. Mater. 2019, 367, 397–406. [Google Scholar] [CrossRef]
- Valdebenito-Rolack, E.; Díaz, R.; Marín, F.; Gómez, D.; Hansen, F. Markers for the Comparison of the Performances of Anoxic Biotrickling Filters in Biogas Desulphurisation: A Critical Review. Processes 2021, 9, 567. [Google Scholar] [CrossRef]
- Zeng, Y.; Luo, Y.; Huan, C.; Shuai, Y.; Liu, Y.; Xu, L.; Ji, G.; Yan, Z. Anoxic Biodesulfurization Using Biogas Digestion Slurry in Biotrickling Filters. J. Clean. Prod. 2019, 224, 88–99. [Google Scholar] [CrossRef]
- Quijano, G.; Valenzuela, E.I.; Cantero, D.; Ramírez, M.; Figueroa-González, I. Impact of an Anoxic Desulfurization Process on Methane Content of the Purified Biogas. Fuel 2021, 303, 121256. [Google Scholar] [CrossRef]
- González-Cortés, J.J.; Almenglo, F.; Ramírez, M.; Cantero, D. Simultaneous Removal of Ammonium from Landfill Leachate and Hydrogen Sulfide from Biogas Using a Novel Two-Stage Oxic-Anoxic System. Sci. Total Environ. 2021, 750, 141664. [Google Scholar] [CrossRef] [PubMed]
- Fortuny, M.; Guisasola, A.; Casas, C.; Gamisans, X.; Lafuente, J.; Gabriel, D. Oxidation of Biologically Produced Elemental Sulfur under Neutrophilic Conditions. J. Chem. Technol. Biotechnol. 2010, 85, 378–386. [Google Scholar] [CrossRef]
- Van den Bosch, P.L.F.; Sorokin, D.Y.; Buisman, C.J.N.; Janssen, A.J.H. The Effect of PH on Thiosulfate Formation in a Biotechnological Process for the Removal of Hydrogen Sulfide from Gas Streams. Environ. Sci. Technol. 2008, 42, 2637–2642. [Google Scholar] [CrossRef]
- Mendez-Garcia, C.; Pelaez, A.I.; Mesa, V.; Sanchez, J.; Golyshina, O.V.; Ferrer, M. Microbial Diversity and Metabolic Networks in Acid Mine Drainage Habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [CrossRef] [Green Version]
- Tu, X.; Li, J.; Feng, R.; Sun, G.; Guo, J. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of PH on the Bacterial Communities. PLoS ONE 2016, 11, e0155593. [Google Scholar] [CrossRef]
- Sun, S.; Jia, T.; Chen, K.; Peng, Y.; Zhang, L. Simultaneous Removal of Hydrogen Sulfide and Volatile Organic Sulfur Compounds in Off-Gas Mixture from a Wastewater Treatment Plant Using a Two-Stage Bio-Trickling Filter System. Front. Environ. Sci. Eng. 2019, 13, 60. [Google Scholar] [CrossRef]
- de Arespacochaga, N.; Valderrama, C.; Mesa, C.; Bouchy, L.; Cortina, J.L. Biogas Biological Desulphurisation under Extremely Acidic Conditions for Energetic Valorisation in Solid Oxide Fuel Cells. Chem. Eng. J. 2014, 255, 677–685. [Google Scholar] [CrossRef]
Properties | Cellular Concrete Waste | Expanded Schist |
---|---|---|
Density (kg m−3) | 547 ± 5 | 1248 ± 12 |
Porosity (%) | 64 | 47 |
pH of surface | 9.0 ± 0.1 | 7.0 ± 0.1 |
Composition (weight %) | ||
SiO2 | 50.5 | 56.4 |
Fe2O3 | 1.3 | 12.4 |
Al2O3 | 2.2 | 20.5 |
CaO | 24.6 | 0.9 |
K2O | 0.2 | 5 |
SO3 | 19.7 | 1.6 |
TiO2 | (nd) | (nd) |
P2O5 | 1.4 | 12.4 |
Parameter | Definition | Nomenclature |
---|---|---|
Loading Rate LR (g m−3 h−1) | : Inlet concentration (g m−3) | |
Removal Capacity RC (g m−3 h−1) | : Outlet concentration (g m−3) | |
Empty Bed Residence Time EBRT (s) | Q: Gas flow rate (m3 s−1) | |
Removal Efficiency RE (%) | V: Packing bed volume (m3) |
Duration (Day) | Inlet H2S Concentration (mg m−3) | Abiotic Filter EBRT (s) | Biotrickling Filter EBRT (s) | Total EBRT (s) | Loading Rate LR (g m−3 h−1) |
---|---|---|---|---|---|
8 | 350 | 180 | 180 | 360 | 3.5 |
8 | 500 | 5.0 | |||
8 | 900 | 9.0 | |||
6 | 1200 | 12.0 | |||
8 | 1500 | 14.5 | |||
11 | 1500 | 150 | 150 | 300 | 18.0 |
10 | 120 | 120 | 240 | 22.5 | |
10 | 100 | 100 | 200 | 27.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poser, M.; Silva, L.R.D.E.; Peu, P.; Dumont, É.; Couvert, A. A Two-Stage Biogas Desulfurization Process Using Cellular Concrete Filtration and an Anoxic Biotrickling Filter. Energies 2022, 15, 3762. https://doi.org/10.3390/en15103762
Poser M, Silva LRDE, Peu P, Dumont É, Couvert A. A Two-Stage Biogas Desulfurization Process Using Cellular Concrete Filtration and an Anoxic Biotrickling Filter. Energies. 2022; 15(10):3762. https://doi.org/10.3390/en15103762
Chicago/Turabian StylePoser, Morgane, Luis Rodolfo Duarte E. Silva, Pascal Peu, Éric Dumont, and Annabelle Couvert. 2022. "A Two-Stage Biogas Desulfurization Process Using Cellular Concrete Filtration and an Anoxic Biotrickling Filter" Energies 15, no. 10: 3762. https://doi.org/10.3390/en15103762
APA StylePoser, M., Silva, L. R. D. E., Peu, P., Dumont, É., & Couvert, A. (2022). A Two-Stage Biogas Desulfurization Process Using Cellular Concrete Filtration and an Anoxic Biotrickling Filter. Energies, 15(10), 3762. https://doi.org/10.3390/en15103762