SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis
Abstract
:1. Introduction
2. Simulation Tools and Models
2.1. SiC and FeCrAl as Potential ATF Cladding
2.2. APR-1400 Design Parameters
2.3. Computation Tools
3. Results and Discussion
3.1. Pin-Cell Calculations
3.2. Lattice Calculation
3.3. 2D Full Core Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snead, M.A.; Katoh, Y.; Koyanagi, T.; Singh, G.P. SiC/SiC Cladding Materials Properties Handbook; No. ORNL/TM-2017/385; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2017. [CrossRef]
- Pasamehmetoglu, K.; Massara, S.; Costa, D.; Bragg-Sitton, S.; Moatti, M.; Kurata, M.; Iracane, D.; Ivanova, T.; Bischoff, J.; Delafoy, C.; et al. State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels. 2018. Available online: http://inis.iaea.org/Search/search.aspx?orig_q=RN:50015394 (accessed on 2 February 2022).
- Powers, J.J. Fully Ceramic Microencapsulated (FCM) Replacement Fuel for LWRs. 2013. Available online: http://www.osti.gov/contact.html (accessed on 2 February 2022).
- Bragg-Sitton, S.M.; Carmack, J.; Goldner, F. Evaluation Metrics Applied to Accident Tolerant Fuels; No. INL/CON-14-32641; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2014.
- Youinou, G.J.; Sen, R.S. Impact of Accident-Tolerant Fuels and Claddings on the Overall Fuel Cycle: A Preliminary Systems Analysis. Nucl. Technol. 2017, 188, 123–138. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Jang, S.; Kim, Y. Impacts of an ATF Cladding on Neutronic Performances of the Soluble-Boron-Free ATOM Core. Int. J. Energy Res. 2020, 44, 8193–8207. [Google Scholar] [CrossRef]
- Allen, P.L.; Ford, L.H.; Shennan, J.v. Nuclear Fuel Coated Particle Development in the Reactor Fuel Element Laboratories of the U.K. Atomic Energy Authority. Nucl. Technol. 1977, 35, 246–253. [Google Scholar] [CrossRef]
- Schulten, R. The HTR with SiC-Technology. Nucl. Eng. Des. 1993, 140, 261–267. [Google Scholar] [CrossRef]
- Chunhe, T.; Jie, G. Improvement in Oxidation Resistance of the Nuclear Graphite by Reaction-Coated SiC Coating. J. Nucl. Mater. 1995, 224, 103–108. [Google Scholar] [CrossRef]
- Kim, B.G.; Choi, Y.; Lee, J.W.; Lee, Y.W.; Sohn, D.S.; Kim, G.M. Multi-Layer Coating of Silicon Carbide and Pyrolytic Carbon on UO2 Pellets by a Combustion Reaction. J. Nucl. Mater. 2000, 281, 163–170. [Google Scholar] [CrossRef]
- Lippmann, W.; Knorr, J.; Nöring, R.; Umbreit, M. Investigation of the Use of Ceramic Materials in Innovative Light Water Reactor—Fuel Rod Concepts. Nucl. Eng. Des. 2001, 205, 13–22. [Google Scholar] [CrossRef]
- Verrall, R.A.; Vlajic, M.D.; Krstic, V.D. Silicon Carbide as an Inert-Matrix for a Thermal Reactor Fuel. J. Nucl. Mater. 1999, 274, 54–60. [Google Scholar] [CrossRef]
- Alrwashdeh, M.; Alameri, S.A. Preliminary Neutronic Analysis of Alternative Cladding Materials for APR-1400 Fuel Assembly. Nucl. Eng. Des. 2021, 384, 111486. [Google Scholar] [CrossRef]
- Price, R.J. Properties of Silicon Carbide for Nuclear Fuel Particle Coatings. Nucl. Technol. 2017, 35, 320–336. [Google Scholar] [CrossRef]
- Powers, J.J.; Brian, D.W. A Review of TRISO Fuel Performance Models. J. Nucl. Mater. 2010, 405, 74–82. [Google Scholar] [CrossRef]
- Snead, L.L.; Nozawa, T.; Katoh, Y.; Byun, T.-S.; Kondo, S.; Petti, D.A. Handbook of SiC Properties for Fuel Performance Modeling. J. Nucl. Mater. 2007, 371, 329–377. [Google Scholar] [CrossRef]
- Ott, L.J.; Robb, K.R.; Wang, D. Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance during Normal Operation and under DB and BDB Accident Conditions. J. Nucl. Mater. 2014, 448, 520–533. [Google Scholar] [CrossRef]
- George, N.M.; Terrani, K.; Powers, J.; Worrall, A.; Maldonado, I. Neutronic Analysis of Candidate Accident-Tolerant Cladding Concepts in Pressurized Water Reactors. Ann. Nucl. Energy 2015, 75, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Kozlowski, T.; Hales, J.D. Neutronics and Fuel Performance Evaluation of Accident Tolerant FeCrAl Cladding under Normal Operation Conditions. Ann. Nucl. Energy 2015, 85, 763–775. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. Accident Tolerant Fuels for LWRs: A Perspective. J. Nucl. Mater. 2014, 448, 374–379. [Google Scholar] [CrossRef]
- Terrani, K.A.; Zinkle, S.J.; Snead, L.L. Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding. J. Nucl. Mater. 2014, 448, 420–435. [Google Scholar] [CrossRef]
- Terrani, K.A.; Parish, C.M.; Shin, D.; Pint, B.A. Protection of Zirconium by Alumina- and Chromia-Forming Iron Alloys under High-Temperature Steam Exposure. J. Nucl. Mater. 2013, 438, 64–71. [Google Scholar] [CrossRef]
- Younker, I.; Fratoni, M. Neutronic Evaluation of Coating and Cladding Materials for Accident Tolerant Fuels. Prog. Nucl. Energy 2016, 88, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.; Ikehara, T.; Takuya, I.T.O.; Etsuro, S.A. Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels. J. Nucl. Sci. Technol. 2002, 39, 900–912. [Google Scholar] [CrossRef]
- Alrwashdeh, M.; Alameri, S.A.; Alkaabi, A.K. Preliminary Study of a Prismatic-Core Advanced High-Temperature Reactor Fuel Using Homogenization Double-Heterogeneous Method. Nucl. Sci. Eng. 2020, 194, 163–167. [Google Scholar] [CrossRef]
- Alameri, S.A.; Alrwashdeh, M. Preliminary Three-Dimensional Neutronic Analysis of IFBA Coated TRISO Fuel Particles in Prismatic-Core Advanced High Temperature Reactor. Ann. Nucl. Energy 2021, 163, 108551. [Google Scholar] [CrossRef]
- Pham, H.; Kurata, M.; Steinbrueck, M. Steam Oxidation of Silicon Carbide at High Temperatures for the Application as Accident Tolerant Fuel Cladding, an Overview. Thermo 2021, 1, 151–167. [Google Scholar] [CrossRef]
- Alraisi, A.; Yi, Y.; Lee, S.; Alameri, S.A.; Qasem, M.; Paik, C.-Y.; Jang, C. Effects of ATF Cladding Properties on PWR Responses to an SBO Accident: A Sensitivity Analysis. Ann. Nucl. Energy 2022, 165, 108784. [Google Scholar] [CrossRef]
- Guo, D.; He, C.; Zang, H.; Zhang, P.; Ma, L.; Li, T.; Cao, X. Re-Evaluation of Neutron Displacement Cross Sections for Silicon Carbide by a Monte Carlo Approach. J. Nucl. Sci. Technol. 2015, 53, 161–172. [Google Scholar] [CrossRef]
- Pritychenko, B.; Mughabghab, S.F. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries. Nucl. Data Sheets 2012, 113, 3120–3144. [Google Scholar] [CrossRef] [Green Version]
- Mughabghab, S.F. Thermal Neutron Capture Cross Sections Resonance Integrals and G-Factors. IAEA. February 2003. Available online: https://www.osti.gov/etdeweb/biblio/20332542 (accessed on 2 February 2022).
- Suh, J.-K.; Kim, Y.-H. Advisory Committee on Reactor Safeguards Review of Reactor for the APR1400 Design Certification. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 18–19 May 2017. [Google Scholar]
- Kim, I.; Kim, D.-S. APR1400—Development Status and Design Features. United States: American Nuclear Society—ANS. Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:40044533 (accessed on 1 July 2020).
- Alnoamani, Z.; Alameri, S.A.; Elsawi, M. Neutronic and Fuel Performance Evaluation of Accident Tolerant Fuel Concepts in APR1400 Reactor. Trans. Am. Nucl. Soc. 2018, 118, 1010–1013. [Google Scholar]
- APR1400 Design Control Document Tier 2 Chapter 4 Reactor. December 2014. Available online: https://www.nrc.gov/docs/ML1500/ML15006A042.pdf (accessed on 1 July 2020).
- Leppänen, J.; Pusa, M.; Viitanen, T.; Valtavirta, V.; Kaltiaisenaho, T. The Serpent Monte Carlo Code: Status, Development and Applications in 2013. Ann. Nucl. Energy 2015, 82, 142–150. [Google Scholar] [CrossRef]
- Fridman, E.; Leppänen, J. On the Use of the Serpent Monte Carlo Code for Few-Group Cross Section Generation. Ann. Nucl. Energy 2011, 38, 1399–1405. [Google Scholar] [CrossRef]
- Van der Marck, S.C. Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6. Nucl. Data Sheets 2012, 113, 2935–3005. [Google Scholar] [CrossRef]
- Alrwashdeh, M. 239Pu Evaluation Comparison Study. Ann. Nucl. Energy 2018, 118, 313–316. [Google Scholar] [CrossRef]
- Alrwashdeh, M.; Kan, W. U233 Data Evaluation for Criticality Study. J. Nucl. Eng. Radiat. Sci. 2016, 2, 034501. [Google Scholar] [CrossRef]
- Leppänen, J. On the Use of Delta-Tracking and the Collision Flux Estimator in the Serpent 2 Monte Carlo Particle Transport Code. Ann. Nucl. Energy 2017, 105, 161–167. [Google Scholar] [CrossRef]
- Hosokawa, T. Nuclear Fuel Element. Patent JPH03245090A, 31 October 1991. Available online: https://patents.google.com/patent/JPH03245090A/en?oq=Hosokawa%2c+Takanori.+(1990).+Nuclear+fuel+element+(JPH03245090A).+Japan (accessed on 2 February 2022).
- Valtavirta, V.; Viitanen, T.; Leppänen, J. Internal Neutronics-Temperature Coupling in Serpent 2. Nucl. Sci. Eng. 2017, 177, 193–202. [Google Scholar] [CrossRef]
Fuel Form | |||||
---|---|---|---|---|---|
Property | UO2 | FCM | U-10Mo | UN | U3Si2 |
Thermal conductivity (W/m-K) | 4 | 19 | 37 | 20 | 15 |
Heat Capacity (J/kg-K) | 300 | 230 | 145 | 230 | 250 |
Melting temperature (°C) | 2840 | 2400 | 1150 | 2762 | 1660 |
Uranium density (g/cm3) | 9.5–10.8 | 1–2 | 16.9 | 13.5 | 11.3 |
Composition (wt %) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cladding Material | Cross Section (Barn) | Thermal Conductivity (W/m-K) | Melting Point (°C) | Density (g/cm3) | Zr | Sn | Fe | Cr | Si | C | Al |
Zircaloy-4 | 0.19440 | 21.5 | 1848.0 | 6.57 | 97.58 | 1.1 | 0.1 | 1.1 | --- | --- | --- |
SiC | 0.08600 | 120 | 2730.0 | 2.58 | --- | --- | --- | --- | 70.08 | 29.92 | |
FeCrAl | 4.43000 | 26.0 | 1500.0 | 7.10 | --- | --- | 75.0 | 20.0 | --- | --- | 5.0 |
Item | Value |
---|---|
Number of fuel assemblies | 241 |
Number of control assemblies | 93 |
Number of fuel rod locations | 56,876 |
Spacing between fuel assemblies, fuel rod surface to surface, cm | 0.549 |
Total core area, m2 | 10.433 |
Core equivalent diameter, m | 3.647 |
Total weight of zirconium alloy, kg | 29,511 |
Fuel volume (including dishes), m3 | 11.42 |
Burnable absorber concentration (Gd2O3) | 8.0 w/o |
Fuel Enrichment (wt %) | keff, zircaloy | keff, SiC | keff, FeCrAl |
---|---|---|---|
1.68 | 1.16109 ± 0.00014 | 1.16940 ± 0.00013 | 1.02394 ± 0.00016 |
2.64 | 1.24543 ± 0.00014 | 1.25412 ± 0.00013 | 1.12104 ± 0.00014 |
3.14 | 1.31111 ± 0.00013 | 1.31928 ± 0.00013 | 1.19964 ± 0.00014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrwashdeh, M.; Alameri, S.A. SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis. Energies 2022, 15, 3772. https://doi.org/10.3390/en15103772
Alrwashdeh M, Alameri SA. SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis. Energies. 2022; 15(10):3772. https://doi.org/10.3390/en15103772
Chicago/Turabian StyleAlrwashdeh, Mohammad, and Saeed A. Alameri. 2022. "SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis" Energies 15, no. 10: 3772. https://doi.org/10.3390/en15103772
APA StyleAlrwashdeh, M., & Alameri, S. A. (2022). SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis. Energies, 15(10), 3772. https://doi.org/10.3390/en15103772