Improved Operation Strategy for the High Voltage Input Stage of a Multi-Port Smart Transformer
Abstract
:1. Introduction
2. Designing and Modelling the Multi-Port Smart Transformer
2.1. Basic Design
2.2. PEB Model Used for Analysis of Input Port in Series Connection
3. Control Operation of HV Terminals
3.1. Normal Operation: Grid Unity Power Factor Operation (GUPF)
3.2. Extended Operation with PEB Unity Power Factor Operation (BUPF)
3.3. Extended Operation Using Reactive Power (ERPO)
4. Analysis of Operation
4.1. Operation with GUPF
4.2. Operation with BUPF
4.3. Operation with ERCO
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Costa, L.F.; De Carne, G.; Buticchi, G.; Liserre, M. The Smart Transformer: A solid-state transformer tailored to provide ancillary services to the distribution grid. IEEE Power Electron. Mag. 2017, 4, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, B.; Fu, Q.; Mao, S.; Xu, D.G.; Leon, J.I.; Franquelo, L.G. DC Solid State Transformer Based on Three-Level Power Module for Interconnecting MV and LV DC Distribution Systems. IEEE Trans. Power Electron. 2021, 36, 1563–1577. [Google Scholar] [CrossRef]
- Ronanki, D.; Williamson, S.S. Modular Multilevel Converters for Transportation Electrification: Challenges and Opportunities. IEEE Trans. Transp. Electrif. 2018, 4, 399–407. [Google Scholar] [CrossRef]
- Chen, H.; Divan, D. Soft-Switching Solid-State Transformer (S4T). IEEE Trans. Power Electron. 2018, 33, 2933–2947. [Google Scholar] [CrossRef]
- Chen, P.; Liu, J.; Xiao, F.; Zhu, Z.; Huang, Z.; Ren, Q. Optimal Phase-Shifted Modulation Method for Suppressing the Current Ripple of Modular Multilevel Converter-Bidirectional DC–DC Converter Under Unbalanced Operation. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 690–703. [Google Scholar] [CrossRef]
- Younis, T.; Mattavelli, P.; Magnone, P.; Toigo, I.; Corradin, M. Enhanced Level-Shifted Modulation for a Three-Phase Five-Level Modified Modular Multilevel Converter (MMC). IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 704–716. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, D.; Sun, W.; Pei, X. Common-Mode Voltage Reduction Scheme for MMC With Low Switching Frequency in AC–DC Power Conversion System. IEEE Trans. Ind. Inform. 2022, 18, 278–287. [Google Scholar] [CrossRef]
- Marquez, A.; Leon, J.I.; Vazquez, S.; Franquelo, L.G.; Kouro, S. Adaptive phase-shifted PWM for multilevel cascaded H-bridge converters with large number of power cells. In Proceedings of the 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Cadiz, Spain, 4–6 April 2017; pp. 430–435. [Google Scholar] [CrossRef]
- Cai, Y.; Gu, C.; Yang, J.; Li, J.; Buticchi, G.; Zhang, H. An Advanced Extended Phase Shift Modulation Strategy of Dual Active Bridge Converter Considering Magnetizing Inductance. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Monopoli, V.G.; Marquez, A.; Leon, J.I.; Liserre, M.; Buticchi, G.; Franquelo, L.G.; Vazquez, S. Applications and Modulation Methods for Modular Converters Enabling Unequal Cell Power Sharing: Carrier Variable-Angle Phase-Displacement Modulation Methods. IEEE Ind. Electron. Mag. 2021, 16, 19–30. [Google Scholar] [CrossRef]
- Marquez, A.; Monopoli, V.G.; Tcai, A.; Leon, J.I.; Buticchi, G.; Vazquez, S.; Liserre, M.; Franquelo, L.G. Discontinuous-PWM Method for Multilevel N-Cell Cascaded H-Bridge Converters. IEEE Trans. Ind. Electron. 2021, 68, 7996–8005. [Google Scholar] [CrossRef]
- Bute, P.R.; Mittal, S.K. Simulation Study of Cascade H-bridge Multilevel Inverter 7-Level Inverter by SHE Technique. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 670–674. [Google Scholar] [CrossRef]
- Sanjay, P.S.; Tanaji, P.R.; Patil, S. Symmetrical Multilevel Cascaded H-Bridge Inverter Using Multicarrier SPWM Technique. In Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Maurya, S.; Mishra, D.; Singh, K.; Mishra, A.K.; Pandey, Y. An Efficient Technique to reduce Total Harmonics Distortion in Cascaded H- Bridge Multilevel Inverter. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Sanchez-Cruz, S.; Romero-Cadaval, E.; Cabrera, B.M.; Romera, E.G.; Montero, M.I.M.; Gonzalez, F.B. Modulation strategy and control of Modular Cascade H-Bridge Converters as Input-side of a Multi-port Smart Transformer. In Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain, 10–12 March 2021; pp. 1320–1325. [Google Scholar] [CrossRef]
- IRoasto, I.; Romero-Cadaval, E.; Martins, J.; Smolenski, R. State of the art of active power electronic transformers for smart grids. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 5241–5246. [Google Scholar] [CrossRef]
- Cabrera, B.M.; Cadaval, E.R.; Cruz, S.S.; Montero, M.I.M.; Romera, E.G.; Gonzalez, F.B. Control of modular multilevel converter as input side of a smart transformer. In Proceedings of the 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Florence, Italy, 14–16 July 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, F.; Huang, Y.; Wang, S.; Pan, S.; Zha, X.; Diao, X. A Multi-port DC Solid-state Transformer for MVDC Integration Interface of Multiple Distributed Energy Sources and DC Loads in Distribution Network. IEEE Trans. Power Electron. 2022, 37, 2283–2296. [Google Scholar] [CrossRef]
- Hazra, S.; Bhattacharya, S.; Chakraborty, C. A novel control principle for a high frequency transformer based multiport converter for integration of renewable energy sources. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 7984–7989. [Google Scholar] [CrossRef]
- Zheng, L.; Marellapudi, A.; Chowdhury, V.R.; Bilakanti, N.; Kandula, R.P.; Saeedifard, M.; Grijalva, S.; Divan, D. Solid-State Transformer and Hybrid Transformer with Integrated Energy Storage in Active Distribution Grids: Technical and Economic Comparison, Dispatch, and Control. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 1. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, G.; Bhattacharya, S.; Huang, A.Q. Voltage and Power Balance Control for a Cascaded H-Bridge Converter-Based Solid-State Transformer. IEEE Trans. Power Electron. 2013, 28, 1523–1532. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, H.; Fu, S.; Shi, J.; He, X. Voltage and power balance control strategy for three-phase modular cascaded solid stated transformer. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1475–1480. [Google Scholar] [CrossRef]
- Ko, Y.; Andresen, M.; Buticchi, G.; Liserre, M. Power Routing for Cascaded H-Bridge Converters. IEEE Trans. Power Electron. 2017, 32, 9435–9446. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Chen, D. A Power Adaptive Control Strategy for Further Extending the Operation Range of Single-Phase Cascaded H-Bridge Multilevel PV Inverter. IEEE Trans. Ind. Electron. 2022, 69, 1509–1520. [Google Scholar] [CrossRef]
- Wang, C.; Chen, M.; Jie, Y. A Reactive Power Control Optimization Scheme for the Power Imbalance of Cascaded Photovoltaic Converter. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 123–129. [Google Scholar] [CrossRef]
Topology | Active Device Count | Soft-Switching | DC Caps | XFMR Frequency | Device V/I Rating | Total Device IRMS Rating | Fault Current | Efficiency |
---|---|---|---|---|---|---|---|---|
Soft-switching solid state transformer (SST) | 12 (main) + 2 (auxiliary) | Full range | - | 15 kHz | 1 p.u./2 p.u. | 12 p.u. | 2 p.u. | 97.4% |
DAB-based multi-stage SST | 20 | DC/DC only with a limited range | 2 | 15 kHz | 1 p.u./1 p.u. | 20 p.u. | >10 p.u. | 93% |
Low-frequency transformer with rectifier and inverter | 12 | No | 1 | 60 Hz | 1 p.u./1 p.u. | 12 p.u. | >10 p.u. | 91.5% |
Parameter | Value | |
---|---|---|
Grid voltage phase–phase RMS | Case A 1250 V Case B 1300 V Case C 1400 V | |
DC voltage in PEB output terminals | 400 V | |
PEB output capacitor | 1.5 mF | |
Filter Inductor | Inductance | 10 mH |
Resistance | 0.3 Ω | |
Output power PEB #1 | Given sequence (1300, 1100, 2000, 450, 1300) W | |
Output power PEB #2 | 1000 W | |
Output power PEB #3 | 1400 W | |
Output power PEB #4 | 1800 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Cadaval, E.; Barrero-González, F.; González-Romera, E.; Milanés-Montero, M.-I.; Roncero-Clemente, C. Improved Operation Strategy for the High Voltage Input Stage of a Multi-Port Smart Transformer. Energies 2022, 15, 3778. https://doi.org/10.3390/en15103778
Romero-Cadaval E, Barrero-González F, González-Romera E, Milanés-Montero M-I, Roncero-Clemente C. Improved Operation Strategy for the High Voltage Input Stage of a Multi-Port Smart Transformer. Energies. 2022; 15(10):3778. https://doi.org/10.3390/en15103778
Chicago/Turabian StyleRomero-Cadaval, Enrique, Fermín Barrero-González, Eva González-Romera, María-Isabel Milanés-Montero, and Carlos Roncero-Clemente. 2022. "Improved Operation Strategy for the High Voltage Input Stage of a Multi-Port Smart Transformer" Energies 15, no. 10: 3778. https://doi.org/10.3390/en15103778
APA StyleRomero-Cadaval, E., Barrero-González, F., González-Romera, E., Milanés-Montero, M.-I., & Roncero-Clemente, C. (2022). Improved Operation Strategy for the High Voltage Input Stage of a Multi-Port Smart Transformer. Energies, 15(10), 3778. https://doi.org/10.3390/en15103778