Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Numerical Models
3. Experimental Procedure
4. Results and Discussion
4.1. Dimensionless Height of the Baffle
4.2. Dimensionless Length of the Baffle
4.2.1. Total Dimensionless Length of Baffles
4.2.2. Dimensionless Length of the Single Baffle
4.3. Experimental Validation
5. Conclusions
- (1)
- Adding baffles inside cathode channels could help replenish the oxygen in time, enhance the mass transfer inside the channel, GDL and CL, especially in the area under ribs, and improve PEMFC performance. The dimensionless sizes of baffles have a great impact on PEMFC performance.
- (2)
- The mass transfer and PEMFC performance increase with the increase of dimensionless height and total dimensionless length of baffles while decrease with the increase of dimensionless length of the single baffle. However, excessive dimensionless height of the baffle would weaken PEMFC performance due to the extraordinary higher parasitic power.
- (3)
- PEMFC net power density could be increased by 6.29% when the length of the single baffle, the total length of baffles, and height of the baffle are set to 3.6%, 43.2%, and 90%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanchan, B.K.; Randive, P.; Pati, S. Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell. Int. J. Hydrogen Energy 2020, 45, 21836–21847. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Moghimi, M.; Siavashi, M.; Shirbani, M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl. Therm. Eng. 2019, 150, 433–444. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Qin, Y.; Otoo, O.N.; Zhang, J. Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell. Appl. Energy 2020, 271, 115257. [Google Scholar] [CrossRef]
- Zhang, S.-y.; Qu, Z.-g.; Xu, H.-t.; Talkhoncheh, F.-K.; Liu, S.; Gao, Q. A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel. Int. J. Hydrogen Energy 2021, 46, 27700–27708. [Google Scholar] [CrossRef]
- Du, F.; Hirschfeld, J.A.; Huang, X.; Jozwiak, K.; Dao, T.A.; Bauer, A.; Schmidt, T.J.; Orfanidi, A. Simulative Investigation on Local Hydrogen Starvation in PEMFCs: Influence of Water Transport and Humidity Conditions. J. Electrochem. Soc. 2021, 168, 074504. [Google Scholar] [CrossRef]
- Mu, Y.-T.; Yang, S.-R.; He, P.; Tao, W.-Q. Mesoscopic modeling impacts of liquid water saturation, and platinum distribution on gas transport resistances in a PEMFC catalyst layer. Electrochim. Acta 2021, 388, 138659. [Google Scholar] [CrossRef]
- Cao, Y.; Ayed, H.; Jafarmadar, S.; Abdollahi, M.A.A.; Farag, A.; Wae-hayee, M.; Hashemian, M. PEM fuel cell cathode-side flow field design optimization based on multi-criteria analysis of liquid-slug dynamics. J. Ind. Eng. Chem. 2021, 98, 397–412. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, H.; Zamel, N.; Du, Q.; Jiao, K. 3D lattice Boltzmann modeling of droplet motion in PEM fuel cell channel with realistic GDL microstructure and fluid properties. Int. J. Hydrogen Energy 2020, 45, 12476–12488. [Google Scholar] [CrossRef]
- Afra, M.; Nazari, M.; Kayhani, M.H.; Sharifpur, M.; Meyer, J.P. 3D experimental visualization of water flooding in proton exchange membrane fuel cells. Energy 2019, 175, 967–977. [Google Scholar] [CrossRef]
- Esbo, M.R.; Ranjbar, A.A.; Rahgoshay, S.M. Analysis of water management in PEM fuel cell stack at dead-end mode using direct visualization. Renew. Energy 2020, 162, 212–221. [Google Scholar] [CrossRef]
- Jeon, D.H. Effect of channel-rib width on water transport behavior in gas diffusion layer of polymer electrolyte membrane fuel cells. J. Power Sources 2019, 423, 280–289. [Google Scholar] [CrossRef]
- Chen, H.; Guo, H.; Ye, F.; Ma, C.F. Modification of the two-fluid model and experimental study of proton exchange membrane fuel cells with baffled flow channels. Energy Convers. Manag. 2019, 195, 972–988. [Google Scholar] [CrossRef]
- He, L.; Hou, M.; Gao, Y.; Sun, X.; Song, W.; Zheng, L.; Ai, J.; Zhang, H.; Shao, Z. Experimental study of the S-shaped flow fields in proton exchange membrane fuel cells. Energy Convers. Manag. 2020, 223, 113292. [Google Scholar] [CrossRef]
- Ijaodola, O.S.; El- Hassan, Z.; Ogungbemi, E.; Khatib, F.N.; Wilberforce, T.; Thompson, J.; Olabi, A.G. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 2019, 179, 246–267. [Google Scholar] [CrossRef]
- Kumar, R.R.; Suresh, S.; Suthakar, T.; Singh, V.K. Experimental investigation on PEM fuel cell using serpentine with tapered flow channels. Int. J. Hydrogen Energy 2020, 45, 15642–15649. [Google Scholar] [CrossRef]
- Li, W.-Z.; Yang, W.-W.; Wang, N.; Jiao, Y.-H.; Yang, Y.; Qu, Z.-G. Optimization of blocked channel design for a proton exchange membrane fuel cell by coupled genetic algorithm and three-dimensional CFD modeling. Int. J. Hydrogen Energy 2020, 45, 17759–17770. [Google Scholar] [CrossRef]
- Peng, Y.; Mahyari, H.M.; Moshfegh, A.; Javadzadegan, A.; Toghraie, D.; Shams, M.; Rostami, S. A transient heat and mass transfer CFD simulation for proton exchange membrane fuel cells (PEMFC) with a dead-ended anode channel. Int. Commun. Heat Mass Transf. 2020, 115, 104638. [Google Scholar] [CrossRef]
- Choi, S.H.; Kang, D.G.; Lim, I.S.; Lim, H.S.; Park, C.; Kim, M.S. Experimental study on non-uniform arrangement of 3D printed structure for cathodic flow channel in PEMFC. Int. J. Hydrogen Energy 2022, 47, 1192–1201. [Google Scholar] [CrossRef]
- Xia, Z.F.; Chen, H.C.; Zhang, T.; Pei, P.C. Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 2022, 47, 13076–13086. [Google Scholar] [CrossRef]
- Anyanwu, I.S.; Hou, Y.; Xi, F.; Wang, X.; Yin, Y.; Du, Q.; Jiao, K. Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. Int. J. Hydrogen Energy 2019, 44, 13807–13819. [Google Scholar] [CrossRef]
- Lei, H.; Huang, H.; Li, C.; Pan, M.; Guo, X.; Chen, Y.; Liu, M.; Wang, T. Numerical simulation of water droplet transport characteristics in cathode channel of proton exchange membrane fuel cell with tapered slope structures. Int. J. Hydrogen Energy 2020, 45, 29331–29344. [Google Scholar] [CrossRef]
- Baz, F.B.; Ookawara, S.; Ahmed, M. Enhancing under-rib mass transport in proton exchange membrane fuel cells using new serpentine flow field designs. Int. J. Hydrogen Energy 2019, 44, 30644–30662. [Google Scholar] [CrossRef]
- Badduri, S.R.; Srinivasulu, G.N.; Rao, S.S. Experimental analysis of PEM fuel cell performance using lung channel design bipolar plate. Int. J. Green Energy 2019, 16, 1591–1601. [Google Scholar] [CrossRef]
- Cai, G.; Liang, Y.; Liu, Z.; Liu, W. Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm. Energy 2020, 192, 116670. [Google Scholar] [CrossRef]
- Fahruddin, A.; Ichsani, D.; Taufany, F.; Widodo, B.U.K.; Widodo, W.A. The effect of baffle shape on the performance of a polymer electrolyte membrane fuel cell with a biometric flow field. Int. J. Hydrogen Energy 2021, 46, 6028–6036. [Google Scholar] [CrossRef]
- Liu, S.; Chen, T.; Xie, Y.; Zhang, J.; Wu, C. Numerical simulation and experimental study on the effect of symmetric and asymmetric bionic flow channels on PEMFC performance under gravity. Int. J. Hydrogen Energy 2019, 44, 29618–29630. [Google Scholar] [CrossRef]
- Kang, H.C.; Jum, K.M.; Sohn, Y.J. Performance of unit PEM fuel cells with a leaf-vein-simulating flow field-patterned bipolar plate. Int. J. Hydrogen Energy 2019, 44, 24036–24042. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Z.K.; Wang, X.D.; Li, W.B.; Chen, Y.; Jin, C.; Gong, G.C.; Wan, Z.M. Influence of Wave Parallel Flow Field Design on the Performance of PEMFC. J. Energy Eng. 2021, 147, 04020080. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Z.; Yang, C.; Chen, Y.; Jin, C.; Ding, Y.; Li, W.; Wan, Z. Performance investigation on a novel 3D wave flow channel design for PEMFC. Int. J. Hydrogen Energy 2021, 46, 11127–11139. [Google Scholar] [CrossRef]
- Dong, P.; Xie, G.; Ni, M. The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell. Energy 2020, 206, 117977. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.A.; Khazaee, I.; Fasihfar, A. Experimental and numerical investigation of obstacle effect on the performance of PEM fuel cell. Int. J. Heat Mass Transf. 2019, 141, 891–904. [Google Scholar] [CrossRef]
- Fan, L.; Niu, Z.; Zhang, G.; Jiao, K. Optimization design of the cathode flow channel for proton exchange membrane fuel cells. Energy Convers. Manag. 2018, 171, 1813–1821. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Wu, S.; Shangguan, X.; Zhang, J.; Yin, Y. Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance. J. Power Sources 2020, 457, 228034. [Google Scholar] [CrossRef]
- Wang, B.; Chen, W.; Pan, F.; Wu, S.; Zhang, G.; Park, J.W.; Xie, B.; Yin, Y.; Jiao, K. A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell. J. Power Sources 2019, 434, 226741. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, X.; Shangguan, X.; Zhang, J.; Qin, Y. Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel. Int. J. Hydrogen Energy 2018, 43, 8048–8062. [Google Scholar] [CrossRef]
- He, L.; Hou, M.; Gao, Y.; Fang, D.; Wang, P.; Lv, B.; Shao, Z. A novel three-dimensional flow field design and experimental research for proton exchange membrane fuel cells. Energy Convers. Manag. 2020, 205, 112335. [Google Scholar] [CrossRef]
- Guo, Q.Y.; Qin, Y.Z. Numerical investigation of water droplet removal characteristics in novel block channels of PEMFC using dynamic wettability model. Int. J. Hydrogen Energy 2021, 46, 36890–36902. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, D.; Sun, J.; Chen, B. The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC. Energy 2021, 222, 119951. [Google Scholar] [CrossRef]
- Shen, J.; Tu, Z.; Chan, S.H. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel. Appl. Therm. Eng. 2019, 149, 1408–1418. [Google Scholar] [CrossRef]
- Ghasabehi, M.; Ashrafi, M.; Shams, M. Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation. Fuel 2021, 285, 119194. [Google Scholar] [CrossRef]
- Garcia-Salaberri, P.A. Modeling Capillary Transport in Thin Porous Media Using a Composite Continuum-Pore Network Formulation: Effect of Water Blockage on Gas Diffusion and Convection. In ECS Meeting Abstracts; IOP Publishing: Chicago, IL, USA, 2021; Volume 27, p. 972. [Google Scholar]
Parameter | Value |
---|---|
Current collector length | 50 mm |
Current collector width | 2 mm |
Rib area width | 1 mm |
Flow channel width | 1 mm |
Flow channel height | 0.85 mm |
Flow channel length | 50 mm |
Gas diffusion layer (GDL) height | 0.15 mm |
Catalyst layer (CL) height | 0.01 mm |
Membrane height | 0.025 mm |
Parameter | Valve |
---|---|
Operation temperature | 353.15 K |
Reference current density | 1 Acm−2 |
Anode/cathode pressure | 101,325 Pa |
Faraday constant | 96,487 Cmol−1 |
Gas constant | 8314 Jkmol−1 K−1 |
Electron number for anode reaction | 2 |
Electron number for cathode reaction | 4 |
Mass flow rate (cathode) | 1 × 10−6 kg s−1 |
Mass flow rate (anode) | 1 × 10−7 kg s−1 |
Relative humidity (cathode) | 90% |
Relative humidity (anode) | 50% |
Porosity (gas diffusion layer) | 0.6 |
Porosity (catalyst layer) | 0.2 |
Component | Length × Width × Height (mm) | Material |
---|---|---|
Flow field | 100 × 100 × 18 | Graphite |
Current collector | 100 × 100 × 2 | Brass H80 |
End plate | 100 × 100 × 12 | Aluminum alloy 6061 |
Insulating plate | 100 × 100 × 10 | Epoxy resin |
Sealant | 100 × 100 × 0.15 | PTFE |
Gas diffusion layer | 54 × 54 × 0.19 | Toray TGP-H-060 |
Membrane | 50 × 50 × 0.025 | Nafion®112 |
Case | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
The ratio of the baffle height to the channel height | 0 | 50% | 70% | 90% | 94% |
The ratio of the baffle total length to the channel length | 0 | 21.6% | 21.6% | 21.6% | 21.6% |
The ratio of the single baffle length to the channel length | 0 | 3.6% | 3.6% | 3.6% | 3.6% |
Case | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
The ratio of the baffle height to the channel height | 0 | 50% | 70% | 90% | 94% |
Gross power density (W/cm2) | 0.7916 | 0.8128 | 0.8219 | 0.8375 | 0.8537 |
Percentage increase in gross power density | 2.67% | 3.83% | 5.79% | 7.96% | |
Pumping power density (W/cm2) | 0.0002 | 0.0003 | 0.0004 | 0.0041 | 0.0228 |
Net power density (W/cm2) | 0.7914 | 0.8124 | 0.8215 | 0.8331 | 0.8319 |
Percentage increase in net power density | 2.66% | 3.81% | 5.27% | 5.12% |
Case | 1 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|
The ratio of the baffle height to the channel height | 0 | 90% | 90% | 90% | 90% | 90% |
The ratio of the baffle total length to the channel length | 0 | 10.8% | 21.6% | 32.4% | 37.8% | 43.2% |
The ratio of the single baffle length to the channel length | 0 | 5.4% | 5.4% | 5.4% | 5.4% | 5.4% |
Case | 1 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|
The ratio of the baffle total length to the channel length | 0 | 10.8% | 21.6% | 32.4% | 37.8% | 43.2% |
Gross power density (W/cm2) | 0.7916 | 0.8155 | 0.8375 | 0.8396 | 0.8419 | 0.8445 |
Percentage increase in gross power density | 3.01% | 5.79% | 6.06% | 6.36% | 6.68% | |
Pumping power density (W/cm2) | 0.0002 | 0.0021 | 0.0041 | 0.0048 | 0.0052 | 0.0055 |
Net power density (W/cm2) | 0.7914 | 0.8134 | 0.8331 | 0.8348 | 0.8367 | 0.8390 |
Percentage increase in net power density | 2.79% | 5.27% | 5.48% | 5.73% | 6.01% |
Case | 1 | 11 | 10 | 12 |
---|---|---|---|---|
The ratio of the baffle height to the channel height | 0 | 90% | 90% | 90% |
The ratio of the baffle total length to the channel length | 0 | 43.2% | 43.2% | 43.2% |
The ratio of the single baffle length to the channel length | 0 | 3.6% | 5.4% | 7.2% |
Case | 1 | 11 | 10 | 12 |
---|---|---|---|---|
The ratio of the single baffle length to the channel length | 0 | 3.6% | 5.4% | 7.2% |
Gross power density (W/cm2) | 0.7916 | 0.8471 | 0.8445 | 0.8421 |
Percentage increase in gross power density | 7.01% | 6.68% | 6.38% | |
Pumping power density (W/cm2) | 0.0002 | 0.0060 | 0.0055 | 0.0052 |
Net power density (W/cm2) | 0.7914 | 0.8411 | 0.8390 | 0.8368 |
Percentage increase in net power density | 6.29% | 6.01% | 5.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Sun, J.; Wei, F.; Chen, B. Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell. Energies 2022, 15, 3812. https://doi.org/10.3390/en15103812
Cai Y, Sun J, Wei F, Chen B. Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell. Energies. 2022; 15(10):3812. https://doi.org/10.3390/en15103812
Chicago/Turabian StyleCai, Yonghua, Jingming Sun, Fan Wei, and Ben Chen. 2022. "Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell" Energies 15, no. 10: 3812. https://doi.org/10.3390/en15103812
APA StyleCai, Y., Sun, J., Wei, F., & Chen, B. (2022). Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell. Energies, 15(10), 3812. https://doi.org/10.3390/en15103812