Study on the Thermomechanical Response of Deep Buried Pipe Energy Piles under Temperature Load
Abstract
:1. Introduction
2. Pile Structure and Calculation of Thermomechanical Response
2.1. DBP-EP Structure
2.2. Calculation of Thermomechanical Response of DBP-EP
- is the free expansion/contraction coefficient of concrete;
- is the temperature change.
3. Test Overview and Simulation Model
3.1. Project Overview
3.2. Test Scheme
3.3. Finite Element Numerical Simulation
3.3.1. Basic Assumptions
- (1)
- The thermal physical properties of the soil around the pile, rock, and soil under the pile are uniform;
- (2)
- Groundwater seepage is not considered;
- (3)
- The thermal property of the reinforcement in the pile foundation is the same as that of concrete;
- (4)
- Rock and soil temperature around the pile foundation are uniform;
- (5)
- The effects of the pipe wall on heat transfer are ignored;
- (6)
- The pile–soil contact surface is regarded as rigid unit contact;
- (7)
- It is assumed that soil is an ideal elastoplastic model.
3.3.2. Model Building and Meshing
3.3.3. Physical Parameters and Research Conditions
4. Result Analysis and Discussion
4.1. The Temperature Field Distribution Law
4.2. Axial Strain Distribution of Pile
4.3. Pile Displacement Distribution
4.4. Additional Axial Average Load for Pile Body Temperature
5. Conclusions
- (1)
- Under heating and cooling conditions, the temperature field of the DBP-EP gradually changes from inside to outside at the same depth. The temperature inside the pile changes greatly, while the temperature field within the deep part of the well not surrounded by the pile does not change significantly, which is different from the temperature distribution inside the pile of IBP-EP;
- (2)
- The minimum axial average strain under cooling conditions is significantly smaller than that under heating conditions, and the additional axial average strain under temperature load is significantly larger than that under heating conditions, which leads to greater additional axial stress generated when the pile is cooled. The DBP-EP has a large settlement at the top of the pile under cooling conditions and the connection between the pile and the foundation should be considered in the design;
- (3)
- Under the action of temperature load only, the maximum axial average pressure increment during heating is −85.3 kN/°C and the maximum axial average tension increment during cooling is 99.4 kN/°C, all of which generate additional load that cannot be ignored. In the design stage of the DBP-EP structure, the influence of temperature change on pile bearing capacity should be fully considered to ensure the structural safety of buildings.
Author Contributions
Funding
Conflicts of Interest
References
- Ma, W.B.; Gong, Y.L.; Zhao, D.Q.; Xu, Q.H.; Qin, H.S.; Chen, Y. Present situation and development of geothermal energy exploitation and utilization in China. Bull. Chin. Acad. Sci. 2016, 31, 199–207. [Google Scholar]
- Mao, J.F.; Pan, D.; Geng, S.B.; Chen, S.Y. Application research and prospect of ground source heat pump in underground engineering. Chin. J. Undergr. Space Eng. 2015, 11, 252–256. [Google Scholar]
- Liu, Y.; Zhao, J.; Li, Y. Influence of drilling depth on performance of ground source heat pump system. Acta Energ. Sol. Sin. 2015, 36, 2584–2589. [Google Scholar]
- Chen, C.; Ren, Y.; Wang, Y.F. Simulative and Experimental Study on the Heat Transfer Performance of Vertical Ground Heat Exchangers. J. Hunan Univ. Nat. Sci. 2009, 36, 49–53. [Google Scholar]
- Xiao, H.L.; Chen, Z.; Xiao, Y.; Ma, Q.; Que, M.K. Back-Drilling Deeply Buried Pipe Type Pouring Type Energy Pile Heat Exchange System and Construction Method. China Patent CN108444121A, 24 August 2018. [Google Scholar]
- Chen, Z.; Wang, B.; Zheng, L.F.; Xiao, H.L.; Wang, J.Q. Research on heat exchange law and structural design optimization of deep buried pipe energy piles. Energies 2021, 14, 6449. [Google Scholar] [CrossRef]
- Gui, S.Q.; Cheng, X.H.; Zhang, Z.P. Comparison of heat transfer performance between ground source heat pump pile foundation and borehole heat exchanger. J. Chongqing Jianzhu Univ. 2013, 35, 151–156. [Google Scholar]
- You, S.; Cheng, X.H.; Guo, H.X.; Yao, Z.Q. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy Build. 2014, 79, 23–31. [Google Scholar] [CrossRef]
- Li, X.Y.; Guo, H.X.; Cheng, X.H. Experimental and numerical study on temperature distribution in energy piles. China Civ. Eng. J. 2016, 49, 102–110. [Google Scholar]
- Zhao, H.F.; Tang, R.B.; Gui, S.Q.; Luo, J.; Jia, J. Experimental study on temperature field distribution characteristics of rock and soil around double U-pipe energy pile. J. Civ. Archit. Environ. Eng. 2016, 38, 157–163. [Google Scholar]
- Liu, H.L.; Wu, D.; Kong, G.Q.; Wang, C.L.; Wu, H.W. Thermal response of energy piles with embedded tube and tied tube. Rock Soil Mech. 2017, 38, 333–340. [Google Scholar]
- Gashti, E.H.N.; Malaska, M.; Kujala, K. Evaluation of thermo-mechanical behavior of composite energy piles during heating/cooling operations. Eng. Struct. 2014, 75, 363–373. [Google Scholar] [CrossRef]
- Knellwolf, C.; Peron, H.; Laloui, L. Geotechnical Analysis of Heat Exchanger Piles. J. Geotech. Geoenviron. Eng. 2011, 137, 890–902. [Google Scholar] [CrossRef]
- Olgun, C.G.; Ozudogru, T.Y.; Abdelaziz, S.L.; Senol, A. Long-term performance of heat exchanger piles. Acta Geotech. 2015, 10, 553–569. [Google Scholar] [CrossRef]
- Sutman, M.; Olgun, C.G.; Laloui, L. Cyclic Load–Transfer Approach for the Analysis of Energy Piles. J. Geotech. Geoenviron. Eng. 2019, 145, 04018101. [Google Scholar] [CrossRef]
- Huang, X.; Kong, G.Q.; Liu, H.L.; Peng, H.F.; Hao, Y.H. Negative skin friction behavior of PCC energy pile under heating cycle. J. Disaster Prev. Mitig. Eng. 2017, 37, 511–517. [Google Scholar]
- Ng, C.W.W.; Shi, C.; Gunawan, A.; Laloui, L.; Liu, H.L. Centrifuge modelling of heating effects on energy pile performance in saturated sand. Can. Geotech. J. 2014, 52, 1045–1057. [Google Scholar] [CrossRef]
- Salciarini, D.; Ronchi, F.; Cattoni, E.; Tamagnini, C. Thermomechanical Effects Induced by Energy Piles Operation in a Small Piled Raft. Int. J. Geomech. 2015, 15, 04014042. [Google Scholar] [CrossRef]
- Di, D.A.; Laloui, L. Numerical analysis of the geotechnical behavior of energy piles. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 861–888. [Google Scholar] [CrossRef]
- Gawecka, K.A.; Taborda, D.M.G.; Potts, D.M.; Cui, W.; Zdravkovic, L.; Kasri, M.S.H. Numerical modelling of thermo-active piles in London Clay. Proc. Inst. Civ. Eng. 2017, 170, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Kong, G.Q.; Wang, C.L.; Liu, H.L.; Wu, D.; Che, P. Analysis of pile head displacement of energy pile under repeated temperature cycling. Rock Soil Mech. 2017, 38, 958–964. [Google Scholar]
- Wang, C.L.; Liu, H.L.; Kong, G.Q.; Ng, C.W.W. Model tests of energy piles with and without a vertical load. Environ. Geotech. 2016, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sun, Y.; Xiao, H.L.; Ma, Q.; Zhang, L.G. In-Situ Thermomechanical Response Test of an Energy Pile Under Temperature Loading. Arab. J. Sci. Eng. 2021, 46, 10355–10364. [Google Scholar] [CrossRef]
- Jiang, G.; Li, R.F.; Wang, H.; Chen, G.; Lu, H.W.; Shao, D. Numerical analysis of the bearing capacity of floating energy piles during the full process of thermal-mechanical coupling. Chin. J. Rock Mech. Eng. 2019, 38, 2525–2534. [Google Scholar]
- Huang, Y.P.; Jiang, G.; Lu, H.W.; Song, Z.; Xu, X.L.; Hong, X. Thermal-mechanical coupled load transfer method of energy pile based on exponential model. J. Nanjing Tech Univ. Nat. Sci. Ed. 2019, 41, 96–103. [Google Scholar]
- Lu, H.W.; Jiang, G.; Wang, H.; Hong, X.; Shi, C.L.; Gong, H.W.; Liu, W.Q. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles. Chin. J. Geotech. Eng. 2017, 39, 334–342. [Google Scholar]
- Goode, J.C.; Mccartney, J.S. Centrifuge Modeling of End-Restraint Effects in Energy Foundations. J. Geotech. Geoenviron. Eng. 2015, 141, 04015034. [Google Scholar] [CrossRef] [Green Version]
- Kalantidou, A.; Tang, A.M.; Pereira, J.M. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique 2013, 62, 1047–1051. [Google Scholar] [CrossRef] [Green Version]
- Laloui, L.; Nuth, M.; Vulliet, L. Experimental and numerical investigations of the behavior of a heat exchanger pile. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 763–781. [Google Scholar] [CrossRef]
- Bourne-webb, P.J.; Amatya, B.; Soga, K.; Amis, T.; Davidson, C.; Payne, P. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 2009, 59, 237–248. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, J.W.; Pan, P.; Xiao, H.L.; Ma, Q. Research on the heat exchange characteristics of the deeply buried pipe type of energy pile. Case Stud. Therm. Eng. 2021, 27, 101272. [Google Scholar] [CrossRef]
- Lyu, W.D.; Pu, H.F.; Xiao, H.L.; Hu, D.W.; Ma, Q. Thermal performance of energy pile with deeply penetrating 1-U-shape heat exchanger. Geothermics 2021, 91, 102023. [Google Scholar] [CrossRef]
- Lyu, W.D.; Pu, H.F. Analysis on Factors Influencing Heat Transfer Performance of Energy Pile with Deeply Penetrating Heat Exchanger. Adv. New Renew. Energy 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Coniglio, S.; Gogu, C.; Morlier, J. Weighted average continuity approach and moment correction: New strategies for non-consistent mesh projection in structural mechanics. Arch. Comput. Methods Eng. 2019, 26, 1414–1443. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Gao, H.Y.; Xiao, H.L.; Ma, Q.; Que, M.K. In-situ Thermo-mechanical Response Test of Perfusion Energy Pile under Temperature Loading. J. Disaster Prev. Mitig. Eng. 2019, 39, 592–598. [Google Scholar]
- Zhao, H.F.; Gui, S.Q.; Li, Q.; Jia, J. Temperature Field Distribution in Energy Pile with Buried Spiral Pipe: Characteristics and Influence Factors. J. Yangtze River Sci. Res. Inst. 2017, 34, 153–158. [Google Scholar]
Soil Length (m) | Soil Width (m) | Soil Height (m) | Pile Diameter (m) | Pile Depth (m) | Pipe Diameter (m) | Pipe Thickness (m) | Pipe Distance (m) | Pipe Depth (m) |
---|---|---|---|---|---|---|---|---|
8 | 8 | 102 | 0.8 | 23 | 0.025 | 0.004 | 0.1 | 100 |
Material | Thermal Conductivity (W/(m·K)) | Specific Heat Capacity (J/(kg∙K)) | Thermal Expansion Coefficient (m/°C) |
---|---|---|---|
Soil/rock mass | 1.98 | 2240 | 5 × 10−6 |
Concrete | 2.2 | 970 | 1 × 10−5 |
Backfill | 0.58 | 966 | 5 × 10−6 |
Water | 0.6 | 4182 | - |
Heat-exchange pipe | 0.45 | 2300 | - |
Material | Density (kg/m3) | Elastic Modulus (GPa) | Poisson Ratio | Compressive Strength (MPa) | Shear Modulus (GPa) | Force of Cohesion (kPa) | Angle of Internal Friction (°) |
---|---|---|---|---|---|---|---|
Soil | 1970 | 0.02 | 0.35 | 0.2 | 0.007 | 9 | 11.6 |
Rock mass | 1970 | 19.5 | 0.2 | 50 | 8.13 | 9 | 11.6 |
Concrete | 2500 | 30 | 0.18 | 30 | 12 | - | - |
Backfill | 2650 | 30 | 0.3 | 4 | 12 | - | - |
Water | 998 | - | - | - | - | - | - |
Heat-exchange pipe | 950 | - | - | - | - | - | - |
Number | Working Condition | Initial Temperature (°C) | Inlet Water Temperature (°C) | Flow Rate (m3/h) | Assay Parameters |
---|---|---|---|---|---|
1 | Heating | 18.5 | 30.5 | 1.0 | Temperature field Axial strain Displacement Temperature additional load |
2 | Cooling | 18.5 | 6.5 | 1.0 | Temperature field Axial strain Displacement Temperature additional load |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chang, C.; Chen, Z.; Xiao, H.; Wang, B.; Tan, J.; Hai, D. Study on the Thermomechanical Response of Deep Buried Pipe Energy Piles under Temperature Load. Energies 2022, 15, 3842. https://doi.org/10.3390/en15103842
Wang J, Chang C, Chen Z, Xiao H, Wang B, Tan J, Hai D. Study on the Thermomechanical Response of Deep Buried Pipe Energy Piles under Temperature Load. Energies. 2022; 15(10):3842. https://doi.org/10.3390/en15103842
Chicago/Turabian StyleWang, Jingquan, Chunxia Chang, Zhi Chen, Henglin Xiao, Bo Wang, Jinjia Tan, and Di Hai. 2022. "Study on the Thermomechanical Response of Deep Buried Pipe Energy Piles under Temperature Load" Energies 15, no. 10: 3842. https://doi.org/10.3390/en15103842
APA StyleWang, J., Chang, C., Chen, Z., Xiao, H., Wang, B., Tan, J., & Hai, D. (2022). Study on the Thermomechanical Response of Deep Buried Pipe Energy Piles under Temperature Load. Energies, 15(10), 3842. https://doi.org/10.3390/en15103842