Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas
Abstract
:1. Introduction
2. Production Aspects of Downdraft Gasification of Biomass
2.1. Recent Advances and Limitations in Downdraft Biomass Gasification
Reaction Type | Reaction | Reaction Heat kJ/mol | Equation Number |
---|---|---|---|
(1) | |||
(2) | |||
Solid-gas reactions (Heterogeneous Reactions) | |||
Combustion | −394 | (3) | |
Water-gas | 131 | (4) | |
Boudouard | 173 | (5) | |
Hydrogasification | −75 | (6) | |
Gas-gas reactions (Homogeneous Reactions) | |||
Water gas shift reaction | −41 | (7) | |
Methanation reactions | 206 | (8) |
Bottlenecks in Downdraft Gasification of Biomass
- ◾
- Expense of collecting and delivering biomass to an energy conversion facility.
- ◾
- Removal of the impurities such as tar in the gas stream.
- ◾
- Bridging and scaling of ash in the reactor reduces the gasifier’s efficiency and damages the reactor’s components.
- ◾
- High cost of optional, or assistant, hardware to produce clean, generally toxin-free gas.
- ◾
- Economic and other non-technical hurdles like social inadaptability, inadequate government policies and lack of market float when competing with global energy markets.
- ◾
- Conversion of biomass into fuel gas of suitable product composition.
- ◾
- Handling other streams generated in gasification.
- ◾
- Reactor design for effective gasification of biomass.
2.2. Influencing Parameters on Production Yield of Gasification Products
2.2.1. Effect of Biomass Characteristics
2.2.2. Effect of Moisture Content
2.2.3. Effect of Equivalence Ratio
2.2.4. Effect of Temperature
2.2.5. Effect of Particle Size
Feed Stock | Reactor Type | Experimental Conditions | Results Outcome | References | ||||
---|---|---|---|---|---|---|---|---|
Temperature | Equivalence Ratio | Moisture Content (% wt) | Gasification Medium | Particle Size | ||||
Palm Kernel Shell and high volatile bituminous coal | Top lift updraft | 600–800 °C | 0.26–0.34 | 6 and 2 | Air | 4.9–2.3 mm 4.7–9.5 mm | H2/CO ratio—0.57–0.59, 0.49–0.51 and 0.42–0.46 at 70, 85 and 100 vol% biomass blends | [98] |
Soybean | Batch tank | 500 °C | - | 5.33 | Air | 80–100 mesh | CO—15%, CO2—30%, CH4—37% and H2—18% at | [99] |
Wood chips | Fixed Bed downdraft | 847 °C | 0.335 | 13.2 | Air | - | 80%. Co-gasification results in the formation of bio-methane. | [100] |
Rice husk | Quartz Fluidized bed | 700 °C | 8.67 | Air | 0.15 mm | H2—11.89%, CO—12.38%, CH4—4.58% C2H4—1.19% and C2H6—0.98% | [101] | |
Garden waste and LDPE | Autothermal Downdraft | 700–900 °C | 0.3 | 13.57 | Air | Heating value of the gas increased from 3.5 MJ/Nm3 to 4.7 MJ/Nm3. Cold gas efficiency increased from 43.8% to 61.8%. | [102] | |
Rice Husk, Rice Husk + Sawdust, Rice Husk + Bamboo dust | Circulating Fluidized-bed | 750–900 °C | 0.19–0.35 | 8.7–9.33 | Air | Blending of biomasses significantly improves the producer gas in terms of H2 production and energy output as well as gas yield. | [103] | |
Eucalyptus wood | Open top-downdraft | 800–1000 °C | 0.3–0.4 | 9.2 | Air | Producer gas obtained with high calorific value of 3.709 MJ/Nm3. CO and H2 of 13% and 10% at ER i0.309. | [104] | |
Biomass waste | Moving Grate | 200–800 °C | 0.28 | Air | 5 × 20 mm | Cold gas efficiency—64.79%, CO2—9.94%, H2—15.03% and CO—22.72% | [105] |
2.2.6. Effect of Gasification Medium
3. Upgradation of Biomass-Derived Synthesis Gas
- Particulate matter, slag resulting in emission problems
- High condensable tar leading to fouling
- Trace metals, H2S and NH3 causing environmental problems
- High ash content
4. Utilization of Biomass-Derived Synthesis Gas
4.1. Evaluation of Gasification Products as a Potential Fuel Source
4.2. Use of Synthesis Gas
- As a fuel in biomass integrated gasification heat and power cycle (BIGCC) for electrical power generation and heating [123].
- Used as fuel in boilers, heaters, and heat exchangers for the generation of steam or heating applications [124].
- For the production of methanol used as a fuel or used as a precursor for chemicals like acetic acid, methyl acetate, formaldehyde, ethylene, propylene, and dimethyl ether [125].
- For the production of bio-based hydrogen which can be used in fuel cells and to manufacture fertilizers and for hydrotreating.
- Using Fischer-Tropsch synthesis, transportation fuels like gasoline, kerosene, jet fuel, diesel and heavy products like wax can be produced [126].
- For ethanol production by synthesis gas fermentation using microorganisms [127].
Combustion Behaviour of Synthesis Gas
4.3. Use of Biochar
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudley, B. BP Statistical Review of World Energy; British Petrol: London, UK, 2020; pp. 1–56. [Google Scholar]
- Forsberg, C.W.; Dale, B.E.; Jones, D.S.; Hossain, T.; Morais, A.R.C.; Wendt, L.M. Replacing Liquid Fossil Fuels and Hydrocarbon Chemical Feedstocks with Liquid Biofuels from Large-Scale Nuclear Biorefineries. Appl. Energy 2021, 298, 117225. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, P.K.; Chintala, V.; Khatri, N.; Patel, A. Environment-Friendly Biodiesel/Diesel Blends for Improving the Exhaust Emission and Engine Performance to Reduce the Pollutants Emitted from Transportation Fleets. Int. J. Environ. Res. Public Health 2020, 17, 3896. [Google Scholar] [CrossRef] [PubMed]
- Chintala, V.; Kumar, S.S.; Pandey, J.K.J.K.; Sharma, A.K.A.K.; Kumar, S.S. Solar Thermal Pyrolysis of Non-Edible Seeds to Biofuels and Their Feasibility Assessment. Energy Convers. Manag. 2017, 153, 482–492. [Google Scholar] [CrossRef]
- Londoño-Pulgarin, D.; Cardona-Montoya, G.; Restrepo, J.C.; Muñoz-Leiva, F. Fossil or Bioenergy? Global Fuel Market Trends. Renew. Sustain. Energy Rev. 2021, 143, 110905. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S. Comparative Evolution of Biomass Production and Lipid Accumulation Potential of Chlorella Species Grown in a Bubble Column Photobioreactor. Biofuels 2016, 7, 389–399. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Joshi, G. Exploration of Upstream and Downstream Process for Microwave Assisted Sustainable Biodiesel Production from Microalgae Chlorella Vulgaris. Bioresour. Technol. 2016, 216, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Sikarwar, V.S.; Zhao, M.; Fennell, P.S.; Shah, N.; Anthony, E.J. Progress in Biofuel Production from Gasification. Prog. Energy Combust. Sci. 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Sirous, R.; da Silva, F.J.N.; da Cruz Tarelho, L.A.; Martins, N.A.D. Mixed Biomass Pelleting Potential for Portugal, Step Forward to Circular Use of Biomass Residues. Energy Rep. 2020, 6, 940–945. [Google Scholar] [CrossRef]
- Murugan, S.; Gu, S. Research and Development Activities in Pyrolysis—Contributions from Indian Scientific Community—A Review. Renew. Sustain. Energy Rev. 2015, 46, 282–295. [Google Scholar] [CrossRef]
- Ocreto, J.B.; Chen, W.; Ubando, A.T.; Park, Y.; Kumar, A.; Ashokkumar, V.; Sik, Y.; Kwon, E.E.; Rollon, A.P.; Daniel, M.; et al. A Critical Review on Second- and Third-Generation Bioethanol Production Using Microwaved-Assisted Heating (MAH) Pretreatment. Renew. Sustain. Energy Rev. 2021, 152, 111679. [Google Scholar] [CrossRef]
- Chen, W.H.; Cheng, C.L.; Lee, K.T.; Lam, S.S.; Ong, H.C.; Ok, Y.S.; Saeidi, S.; Sharma, A.K.; Hsieh, T.H. Catalytic Level Identification of ZSM-5 on Biomass Pyrolysis and Aromatic Hydrocarbon Formation. Chemosphere 2021, 271, 129510. [Google Scholar] [CrossRef] [PubMed]
- Ghodke, P.K.; Sharma, A.K.; Pandey, J.K.; Chen, W.-H.; Patel, A.; Ashokkumar, V. Pyrolysis of Sewage Sludge for Sustainable Biofuels and Value-Added Biochar Production. J. Environ. Manag. 2021, 298, 113450. [Google Scholar] [CrossRef] [PubMed]
- Chintala, V.; Sharma, A.K.; Karn, A.; Vardhan, H.; Pandey, J.K. Utilization of Biomass-Derived Pyro-Oils in Compression Ignition (CI) Engines–Recent Developments. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–15. [Google Scholar] [CrossRef]
- Salam, M.A.; Ahmed, K.; Akter, N.; Hossain, T.; Abdullah, B. A Review of Hydrogen Production via Biomass Gasification and Its Prospect in Bangladesh. Int. J. Hydrogen Energy 2018, 43, 14944–14973. [Google Scholar] [CrossRef]
- Havilah, P.R.; Sharma, P.K.; Sharma, A.K. Characterization, Thermal and Kinetic Analysis of Pinusroxburghii. Environ. Dev. Sustain. 2020, 23, 8872–8894. [Google Scholar] [CrossRef]
- Situmorang, Y.A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-Scale Biomass Gasification Systems for Power Generation (<200 kW Class): A Review. Renew. Sustain. Energy Rev. 2020, 117, 109486. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass. Renew. Energy 2017, 129, 695–716. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A Review on Hydrothermal Liquefaction of Biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.H.; Farooq, A.; Gan, Y.Y.; Lee, K.T.; Ashokkumar, V. Catalytic Thermochemical Conversion of Biomass for Biofuel Production: A Comprehensive Review. Renew. Sustain. Energy Rev. 2019, 113, 109266. [Google Scholar] [CrossRef]
- Soares, R.B.; Martins, M.F.; Gonçalves, R.F. A Conceptual Scenario for the Use of Microalgae Biomass for Microgeneration in Wastewater Treatment Plants. J. Environ. Manag. 2019, 252, 109639. [Google Scholar] [CrossRef]
- Yadav, D.; Banerjee, R. A Review of Solar Thermochemical Processes. Renew. Sustain. Energy Rev. 2016, 54, 497–532. [Google Scholar] [CrossRef]
- Karmakar, M.K.; Datta, A.B. Generation of Hydrogen Rich Gas through Fluidized Bed Gasification of Biomass. Bioresour. Technol. 2011, 102, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Ministry of New and Renewable Energy Government of India. MNRE Annual Report 2019; Ministry of New and Renewable Energy Government of India: New Delhi, India, 2019.
- Chaves, L.I.; Da Silva, M.J.; De Souza, S.N.M.; Secco, D.; Rosa, H.A.; Nogueira, C.E.C.; Frigo, E.P. Small-Scale Power Generation Analysis: Downdraft Gasifier Coupled to Engine Generator Set. Renew. Sustain. Energy Rev. 2016, 58, 491–498. [Google Scholar] [CrossRef]
- Ariffin, M.A.; Wan Mahmood, W.M.F.; Mohamed, R.; Mohd Nor, M.T. Performance of Oil Palm Kernel Shell Gasification Using a Medium-Scale Downdraft Gasifier. Int. J. Green Energy 2016, 13, 513–520. [Google Scholar] [CrossRef]
- Jeya Singh, V.C.; Sekhar, S.J. Performance Studies on a Downdraft Biomass Gasifier with Blends of Coconut Shell and Rubber Seed Shell as Feedstock. Appl. Therm. Eng. 2016, 97, 22–27. [Google Scholar] [CrossRef]
- Kallis, K.X.; Pellegrini Susini, G.A.; Oakey, J.E. A Comparison between Miscanthus and Bioethanol Waste Pellets and Their Performance in a Downdraft Gasifier. Appl. Energy 2013, 101, 333–340. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Tartarini, P. Modeling and Investigation of the Channeling Phenomenon in Downdraft Stratified Gasifers. Bioresour. Technol. 2013, 146, 704–712. [Google Scholar] [CrossRef]
- Zachl, A.; Buchmayr, M.; Gruber, J.; Anca-Couce, A.; Scharler, R.; Hochenauer, C. Air Preheating and Exhaust Gas Recirculation as Keys to Achieving an Enhanced Fuel Water Content Range in Stratified Downdraft Gasification. Fuel 2022, 323, 124429. [Google Scholar] [CrossRef]
- Dasappa, S.; Paul, P.J.; Mukunda, H.S.; Rajan, N.K.S.; Sridhar, G.; Sridhar, H.V. Biomass Gasification Technology—A Route to Meet Energy Needs. Curr. Sci. 2004, 87, 908–916. [Google Scholar]
- Wander, P.R.; Altafini, C.R.; Barreto, R.M. Assessment of a Small Sawdust Gasification Unit. Biomass Bioenergy 2004, 27, 467–476. [Google Scholar] [CrossRef]
- Barrio, M.; Fossum, M.; Hustad, J.E. A Small-Scale Stratified Downdraft Gasifier Coupled to a Gas Engine for Combined Heat and Power Production. In Progress in Thermochemical Biomass Conversion; Blackwell Science Ltd.: Oxford, UK, 2008; pp. 426–440. ISBN 9780470694954. [Google Scholar]
- Janajreh, I.; Shrah, M. Al Numerical and Experimental Investigation of Downdraft Gasification of Wood Chips. Energy Convers. Manag. 2013, 65, 783–792. [Google Scholar] [CrossRef]
- Gai, C.; Dong, Y.; Zhang, T. Downdraft Gasification of Corn Straw as a Non-Woody Biomass: Effects of Operating Conditions on Chlorides Distribution. Energy 2014, 71, 638–644. [Google Scholar] [CrossRef]
- Lenis, Y.A.; Pérez, J.F. Gasification of Sawdust and Wood Chips in a Fixed Bed under Autothermal and Stable Conditions. Energy Sources Part A Recover. Util. Environ. Eff. 2014, 36, 2555–2565. [Google Scholar] [CrossRef]
- Tippayawong, N.; Chaichana, C.; Promwangkwa, A.; Rerkkriangkrai, P. Gasification of Cashew Nut Shells for Thermal Application in Local Food Processing Factory. Energy Sustain. Dev. 2011, 15, 69–72. [Google Scholar] [CrossRef]
- Biagini, E.; Barontini, F.; Tognotti, L. Gasification of Agricultural Residues in a Demonstrative Plant: Vine Pruning and Rice Husks. Bioresour. Technol. 2015, 194, 36–42. [Google Scholar] [CrossRef]
- Ramadhas, a.S.; Jayaraj, S.; Muraleedharan, C. Power Generation Using Coir-Pith and Wood Derived Producer Gas in Diesel Engines. Fuel Process. Technol. 2006, 87, 849–853. [Google Scholar] [CrossRef]
- Bassyouni, M.; Waheed, S.; Abdel-aziz, M.H.; Abdel-hamid, S.M.; Naveed, S.; Hussain, A.; Nasir, F. Date Palm Waste Gasification in Downdraft Gasifier and Simulation Using ASPEN HYSYS. Energy Convers. Manag. 2014, 88, 693–699. [Google Scholar] [CrossRef]
- Ma, L.; Wang, T.; Liu, Q.; Zhang, X.; Ma, W.; Zhang, Q. A Review of Thermal-Chemical Conversion of Lignocellulosic Biomass in China. Biotechnol. Adv. 2012, 30, 859–873. [Google Scholar] [CrossRef]
- Martínez, J.D.; Mahkamov, K.; Andrade, R.V.; Lora, E.E.S. Syngas Production in Downdraft Biomass Gasifiers and Its Application Using Internal Combustion Engines. Renew. Energy 2012, 38, 1–9. [Google Scholar] [CrossRef]
- Buragohain, B.; Mahanta, P.; Moholkar, V.S. Biomass Gasification for Decentralized Power Generation: The Indian Perspective. Renew. Sustain. Energy Rev. 2010, 14, 73–92. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Alam, M.T.; Krishna, B.B.; Bhaskar, T.; Perkins, G. A Review on the Production of Renewable Aviation Fuels from the Gasification of Biomass and Residual Wastes. Bioresour. Technol. 2020, 312, 123596. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, R.; Rezaei, M.; Hashem, S.; Jahromi, H. Biomass Gasification in a Downdraft Fixed-Bed Gasifier: Optimization of Operating Conditions. Chem. Eng. Sci. 2021, 231, 116249. [Google Scholar] [CrossRef]
- Samiran, N.A.; Mohd Jaafar, M.N.; Chong, C.T.; Jo-Han, N. A Review of Palm Oil Biomass as a Feedstock for Syngas Fuel Technology. J. Teknol. 2015, 72, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Basu, P. Biomass Gasification and Pyrolysis; Elsevier: London, UK, 2010; ISBN 9780123749888. [Google Scholar]
- Chanthakett, A.; Arif, M.T.; Khan, M.M.K.; Oo, A.M.T. Performance Assessment of Gasification Reactors for Sustainable Management of Municipal Solid Waste. J. Environ. Manag. 2021, 291, 112661. [Google Scholar] [CrossRef]
- Jankes, G.G.; Trninić, M.R.; Stamenić, M.S.; Simonović, T.S.; Tanasić, N.D.; Labus, J.M. Biomass Gasification with CHP Production: A Review of the State-of-the-Art Technology and near Future Perspectives. Therm. Sci. 2012, 16, 115–130. [Google Scholar] [CrossRef]
- González-Vázquez, M.P.; Rubiera, F.; Pevida, C.; Pio, D.T.; Tarelho, L.A.C. Thermodynamic analysis of biomass gasification using aspen plus: Comparison of stoichiometric and non-stoichiometric models. Energies 2021, 14, 189. [Google Scholar] [CrossRef]
- Heidenreich, S.; Foscolo, P.U. New Concepts in Biomass Gasification. Prog. Energy Combust. Sci. 2015, 46, 72–95. [Google Scholar] [CrossRef]
- Susastriwan, A.A.P.; Purnomo Saptoadi, H. Comparision of the Gasification Performance in the Downdraft Fixed-Bed Gasiferfed by Different Feedstocks: Rice Husk, Sawdust, and Their Mixture. Sustain. Energy Technol. Assess. 2019, 34, 27–34. [Google Scholar] [CrossRef]
- Singla, M.; Singh, M.; Dogra, R. Experimental Investigation of Imbert Downdraft Gasifier Using Rice Straw Briquettes. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–11. [Google Scholar] [CrossRef]
- Pal, R.K. Gasification of Cotton Stalk in a Downdraft Gasifier. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–13. [Google Scholar] [CrossRef]
- Leijenhorst, E.J.; Wolters, W.; Van De Beld, B.; Prins, W. Staged Biomass Gasification by Autothermal Catalytic Reforming of Fast Pyrolysis Vapors. Energy Fuels 2015, 29, 7395–7407. [Google Scholar] [CrossRef]
- Vakalis, S.; Baratieri, M. Technological Advancements in Small Scale Biomass Gasification Case Study of South Tyrol; University of Bolzano, Faculty of Science and Technology: Bolzano, Italy, 2014; pp. 1–14. [Google Scholar]
- Ruiz, J.A.; Juárez, M.C.; Morales, M.P.; Muñoz, P.; Mendívil, M.A. Biomass Gasification for Electricity Generation: Review of Current Technology Barriers. Renew. Sustain. Energy Rev. 2013, 18, 174–183. [Google Scholar] [CrossRef]
- Asadullah, M. Barriers of Commercial Power Generation Using Biomass Gasification Gas: A Review. Renew. Sustain. Energy Rev. 2014, 29, 201–215. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Meng, F.; Meng, J.; Zhang, D. Influence of Higher Equivalence Ratio on the Biomass Oxygen Gasification in a Pilot Scale Fixed Bed Gasifier. J. Renew. Sustain. Energy 2018, 10, 053101. [Google Scholar] [CrossRef]
- Siedlecki, M.; de Jong, W. Biomass Gasification as the First Hot Step in Clean Syngas Production Process—Gas Quality Optimization and Primary Tar Reduction Measures in a 100 KW Thermal Input Steam-Oxygen Blown CFB Gasifier. Biomass Bioenergy 2011, 35, S40–S62. [Google Scholar] [CrossRef]
- Anis, S.; Zainal, Z.A. Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review. Renew. Sustain. Energy Rev. 2011, 15, 2355–2377. [Google Scholar] [CrossRef]
- Mustafa, A.; Calay, R.K.; Mustafa, M.Y. A Techno-Economic Study of a Biomass Gasification Plant for the Production of Transport Biofuel for Small Communities. Energy Procedia 2017, 112, 529–536. [Google Scholar] [CrossRef]
- Arvelakis, S.; Koukios, E.G. Physicochemical Upgrading of Agroresidues as Feedstocks for Energy Production via Thermochemical Conversion Methods. Biomass Bioenergy 2002, 22, 331–348. [Google Scholar] [CrossRef]
- Arvelakis, S.; Vourliotis, P.; Kakaras, E.; Koukios, E.G. Effect of Leaching on the Ash Behavior of Wheat Straw and Olive Residue during Fluidized Bed Combustion. Biomass Bioenergy 2001, 20, 459–470. [Google Scholar] [CrossRef]
- Cummer, K.R.; Brown, R.C. Ancillary Equipment for Biomass Gasiÿcation. Biomass 2002, 23, 113–128. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Pal, K.; Rosen, M.A.; Tyagi, S.K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Sharma, A.; Pareek, V.; Zhang, D. Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. [Google Scholar] [CrossRef]
- Lv, D.; Xu, M.; Liu, X.; Zhan, Z.; Li, Z.; Yao, H. Effect of Cellulose, Lignin, Alkali and Alkaline Earth Metallic Species on Biomass Pyrolysis and Gasification. Fuel Process. Technol. 2010, 91, 903–909. [Google Scholar] [CrossRef]
- Blasi, C.D.; Branca, C. Kinetics of Primary Product Formation from Wood Pyrolysis. Ind. Eng. Chem. Res. 2001, 40, 5547–5556. [Google Scholar] [CrossRef]
- Hanaoka, T.; Inoue, S.; Uno, S.; Ogi, T.; Minowa, T. Effect of Woody Biomass Components on Air-Steam Gasification. Biomass Bioenergy 2005, 28, 69–76. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J. Biomass Pretreatment and Characterization: A Review. Biotechnol. Appl. Biomass 2021. [Google Scholar] [CrossRef]
- Wu, C.Z.; Yin, X.L.; Ma, L.L.; Zhou, Z.Q.; Chen, H.P. Operational Characteristics of a 1.2-MW Biomass Gasification and Power Generation Plant. Biotechnol. Adv. 2009, 27, 588–592. [Google Scholar] [CrossRef]
- Xie, L.P.; Li, T.; Gao, J.D.; Fei, X.N.; Wu, X.; Jiang, Y.G. Effect of Moisture Content in Sewage Sludge on Air Gasification. Ranliao Huaxue Xuebao J. Fuel Chem. Technol. 2010, 38, 615–620. [Google Scholar] [CrossRef]
- Thermelis, N.J.; Kim, Y.H.; Brady, M.H. Energy Recovery from New York City Municipal Solid Wastes. Waste Manag. Res. 2002, 20, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Mckendry, P. Energy Production from Biomass (Part 3): Gasification Technologies. Bioresour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Dogru, M.; Howarth, C.R.; Akay, G.; Keskinler, B.; Malik, A.A. Gasification of Hazelnut Shells in a Downdraft Gasifier. Energy 2002, 27, 415–427. [Google Scholar] [CrossRef]
- Chopra, S.; Jain, A.K. A Review of Fixed Bed Gasification Systems for Biomass. Agric. Eng. Int. CIGR E J. 2007, 9, 1–23. [Google Scholar]
- Beohar, H.; Gupta, B.; Sethi, V.K.; Pandey, M. Effect of Air Velocity, Fuel Rate and Moisture Content on the Performance of Updraft Biomass Gasifier Using Fluent Tool. Semant. Sch. 2012, 2, 3622–3627. [Google Scholar]
- Ramanan, M.V.; Lakshmanan, E.; Sethumadhavan, R.; Renganarayanan, S. Modeling and Experimental Validation of Cashew Nut Shell Char Gasification Adopting Chemical Equilibrium Approach. Energy Fuels 2008, 22, 2070–2078. [Google Scholar] [CrossRef]
- Narváez, I.; Orío, A.; Aznar, M.P.; Corella, J. Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas. Ind. Eng. Chem. Res. 1996, 35, 2110–2120. [Google Scholar] [CrossRef]
- Zainal, Z.A.; Rifau, A.; Quadir, G.A.; Seetharamu, K.N. Experimental Investigation of a Downdraft Biomass Gasiÿer. Biomass Bioenergy 2002, 23, 283–289. [Google Scholar] [CrossRef]
- García-Bacaicoa, P.; Mastral, J.F.; Ceamanos, J.; Berrueco, C.; Serrano, S. Gasification of Biomass/High Density Polyethylene Mixtures in a Downdraft Gasifier. Bioresour. Technol. 2008, 99, 5485–5491. [Google Scholar] [CrossRef]
- Tinaut, F.V.; Melgar, A.; Pérez, J.F.; Horrillo, A. Effect of Biomass Particle Size and Air Superficial Velocity on the Gasification Process in a Downdraft Fixed Bed Gasifier. An Experimental and Modelling Study. Fuel Process. Technol. 2008, 89, 1076–1089. [Google Scholar] [CrossRef]
- Xue, G.; Kwapinska, M.; Horvat, A.; Kwapinski, W.; Rabou, L.P.L.M.; Dooley, S.; Czajka, K.M.; Leahy, J.J. Gasification of Torrefied Miscanthus×giganteus in an Air-Blown Bubbling Fluidized Bed Gasifier. Bioresour. Technol. 2014, 159, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gai, C.; Dong, Y. Experimental Study on Non-Woody Biomass Gasification in a Downdraft Gasifier. Int. J. Hydrogen Energy 2012, 37, 4935–4944. [Google Scholar] [CrossRef]
- Skoulou, V.; Zabaniotou, A.; Stavropoulos, G.; Sakelaropoulos, G. Syngas Production from Olive Tree Cuttings and Olive Kernels in a Downdraft Fixed-Bed Gasifier. Int. J. Hydrogen Energy 2008, 33, 1185–1194. [Google Scholar] [CrossRef]
- Rong, L.; Maneerung, T.; Charmaine, J.; Gee, K.; Huat, B.; Wah, Y.; Dai, Y.; Wang, C. Co-Gasification of Sewage Sludge and Woody Biomass in a Fixed-Bed Downdraft Gasifier: Toxicity Assessment of Solid Residues. Waste Manag. 2015, 36, 241–255. [Google Scholar] [CrossRef] [PubMed]
- González, J.F.; Román, S.; Bragado, D.; Calderón, M. Investigation on the Reactions Influencing Biomass Air and Air/Steam Gasification for Hydrogen Production. Fuel Process. Technol. 2008, 89, 764–772. [Google Scholar] [CrossRef]
- Kumar, A.; Eskridge, K.; Jones, D.D.; Hanna, M.A. Steam-Air Fluidized Bed Gasification of Distillers Grains: Effects of Steam to Biomass Ratio, Equivalence Ratio and Gasification Temperature. Bioresour. Technol. 2009, 100, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Edrich, R.; Bradley, T.; Graboski, M.S. The gasification of ponderosa pine charcoal. In Fundamentals of Thermochemical Biomass Conversion; Springer: Dordrecht, The Netherlands, 1985; pp. 557–566. [Google Scholar] [CrossRef]
- Kumabe, K.; Hanaoka, T.; Fujimoto, S.; Minowa, T.; Sakanishi, K. Co-Gasification of Woody Biomass and Coal with Air and Steam. Fuel 2007, 86, 684–689. [Google Scholar] [CrossRef]
- Li, K.; Zhang, R.; Bi, J. Experimental Study on Syngas Production by Co-Gasification of Coal and Biomass in a Fluidized Bed. Int. J. Hydrogen Energy 2010, 35, 2722–2726. [Google Scholar] [CrossRef]
- Pérez, J.F.; Melgar, A.; Benjumea, P.N. Effect of Operating and Design Parameters on the Gasification/Combustion Process of Waste Biomass in Fixed Bed Downdraft Reactors: An Experimental Study. Fuel 2012, 96, 487–496. [Google Scholar] [CrossRef]
- Reed, T.B.; Das, A. Downdraft Gasifier Engine Systems. In Handbook of Biomass Downdraft Gasifier Engine System; Solar Energy Research Institute: Golden, CO, USA, 1988. [Google Scholar]
- Luo, S.; Xiao, B.; Hu, Z.; Liu, S.; Guan, Y.; Cai, L. Influence of Particle Size on Pyrolysis and Gasification Performance of Municipal Solid Waste in a Fixed Bed Reactor. Bioresour. Technol. 2010, 101, 6517–6520. [Google Scholar] [CrossRef]
- Quintero-coronel, D.A.; Lenis-rodas, Y.A.; Corredor, L.; Perreault, P.; Bula, A. Co-Gasification of Biomass and Coal in a Top-Lit Updraft Fixed Bed Gasifier: Syngas Composition and Its Interchangeability with Natural Gas for Combustion Applications. Fuel 2022, 316, 123394. [Google Scholar] [CrossRef]
- Wang, C.; Du, M.; Feng, H.; Jin, H. Experimental Investigation on Biomass Gasification Mechanism in Supercritical Water for Poly-Generation of Hydrogen-Rich Gas and Biochar. Fuel 2022, 319, 123809. [Google Scholar] [CrossRef]
- Gabbrielli, R.; Barontini, F.; Frigo, S.; Bressan, L. Numerical Analysis of Bio-Methane Production from Biomass-Sewage Sludge Oxy-Steam Gasification and Methanation Process. Appl. Energy 2022, 307, 118292. [Google Scholar] [CrossRef]
- Ke, C.; Shi, C.; Zhang, Y.; Guang, M.; Li, B. Energy Conversion Performances during Biomass Air Gasification Process under Microwave Irradiation. Int. J. Hydrogen Energy 2022. [Google Scholar] [CrossRef]
- Fazil, A.; Kumar, S.; Mahajani, S.M. Downdraft Co-Gasification of High Ash Biomass and Plastics. Energy 2022, 243, 123055. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Y.; Du, J. Co-Gasi Fi Cation of Rice Husk and Woody Biomass Blends in a CFB System: A Modeling Approach. Renew. Energy 2022, 188, 849–858. [Google Scholar] [CrossRef]
- Kumar, P.; Subbarao, P.M.V.; Kala, L.D.; Vijay, V.K. Real-Time Performance Assessment of Open-Top Downdraft Biomass Gasifier System. Clean. Eng. Technol. 2022, 7, 100448. [Google Scholar] [CrossRef]
- Cai, J.; Zheng, W.; Luo, M.; Tang, X. Gasification of Biomass Waste in the Moving-Grate Gasifier with the Addition of All Air into the Oxidizing Stage: Experimental and Numerical Investigation. Process Saf. Environ. Prot. 2021, 147, 985–992. [Google Scholar] [CrossRef]
- Matas, B.; Sruin, L. Gasifícation of Biomass to Second Generation Biofuels: A Review. J. Energy Resour. Technol. 2013, 135, 014001. [Google Scholar] [CrossRef]
- Gil, J.; Corella, J.; Aznar, M.P.; Caballero, M.A. Biomass Gasification in Atmospheric and Bubbling Fluidized Bed: Effect of the Type of Gasifying Agent on the Product Distribution. Biomass Bioenergy 1999, 17, 389–403. [Google Scholar] [CrossRef]
- Kuo, P.C.; Wu, W. Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification. Energies 2015, 8, 94–110. [Google Scholar] [CrossRef]
- Niu, M.; Huang, Y.; Jin, B.; Wang, X. Oxygen Gasification of Municipal Solid Waste in a Fixed-Bed Gasifier. Chin. J. Chem. Eng. 2014, 22, 1021–1026. [Google Scholar] [CrossRef]
- Rabea, K.; Bakry, A.I.; Khalil, A.; El-Fakharany, M.K.; Kadous, M. Real-Time Performance Investigation of a Downdraft Gasifier Fueled by Cotton Stalks in a Batch-Mode Operation. Fuel 2021, 300, 120976. [Google Scholar] [CrossRef]
- Cardona Alzate, C.A.; Solarte Toro, J.C.; Peña, Á.G. Fermentation, Thermochemical and Catalytic Processes in the Transformation of Biomass through Efficient Biorefineries. Catal. Today 2018, 302, 61–72. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L.; Jones, D.D.; Hanna, M.a. Contemporary Issues in Thermal Gasification of Biomass and Its Application to Electricity and Fuel Production. Biomass Bioenergy 2008, 32, 573–581. [Google Scholar] [CrossRef]
- Rapagnâ, S. Steam-Gasiÿcation of Biomass in a Uidised-Bed of Olivine Particles. Biomass Bioenergy 2000, 19, 187–197. [Google Scholar] [CrossRef]
- Hasler, P.; Nussbaumer, T. Gas Cleaning for IC Engine Applications from ® Xed Bed Biomass Gasi ® Cation. Biomass Bioenergy 1999, 16, 385–395. [Google Scholar] [CrossRef]
- Myrén, C.; Hörnell, C.; Björnbom, E.; Sjöström, K. Catalytic Tar Decomposition of Biomass Pyrolysis Gas with a Combination of Dolomite and Silica. Biomass Bioenergy 2002, 23, 217–227. [Google Scholar] [CrossRef]
- Sutton, D.; Kelleher, B.; Ross, J.R.H. Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 2001, 73, 155–173. [Google Scholar] [CrossRef]
- Abdoulmoumine, N.; Adhikari, S.; Kulkarni, A.; Chattanathan, S. A Review on Biomass Gasification Syngas Cleanup. Appl. Energy 2015, 155, 294–307. [Google Scholar] [CrossRef]
- Qian, Y.; Sun, S.; Ju, D.; Shan, X.; Lu, X. Review of the State-of-the-Art of Biogas Combustion Mechanisms and Applications in Internal Combustion Engines. Renew. Sustain. Energy Rev. 2017, 69, 50–58. [Google Scholar] [CrossRef]
- Dayton, D.C.; Turk, B.; Gupta, R. Syngas Cleanup, Conditioning, and Utilization; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 125–174. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Krishna, B.B.; Bhaskar, T.; Perkins, G. Advances in the Thermo-Chemical Production of Hydrogen from Biomass and Residual Wastes: Summary of Recent Techno-Economic Analyses. Bioresour. Technol. 2020, 299, 122557. [Google Scholar] [CrossRef] [PubMed]
- Parvez, A.M.; Afzal, M.T.; Victor Hebb, T.G.; Schmid, M. Utilization of CO2 in Thermochemical Conversion of Biomass for Enhanced Product Properties: A Review. J. CO2 Util. 2020, 40, 101217. [Google Scholar] [CrossRef]
- Williams, C.L.; Dahiya, A.; Porter, P. Introduction to Bioenergy; Dahiya, A., Ed.; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780124079090. [Google Scholar]
- Casella, F.; Colonna, P. Dynamic Modeling of IGCC Power Plants. Appl. Therm. Eng. 2012, 35, 91–111. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of Lignocellulosic Biomass for Enhanced Biogas Production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Pontzen, F.; Liebner, W.; Gronemann, V.; Rothaemel, M.; Ahlers, B. CO2-Based Methanol and DME—Efficient Technologies for Industrial Scale Production. Catal. Today 2011, 171, 242–250. [Google Scholar] [CrossRef]
- Atsonios, K.; Nesiadis, A.; Detsios, N.; Koutita, K.; Nikolopoulos, N.; Grammelis, P. Review on Dynamic Process Modeling of Gasification Based Biorefineries and Bio-Based Heat & Power Plants. Fuel Process. Technol. 2020, 197, 106188. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Donoso-Bravo, A.; Nilsen, P.J.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Influence of Thermal Pretreatment on the Biochemical Methane Potential of Wheat Straw. Bioresour. Technol. 2013, 143, 251–257. [Google Scholar] [CrossRef]
- Spath, P.L.; Dayton, D.C. Preliminary Screening—Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas; National Renewable Energy Laboratory: Golden, CO, USA, 2003; pp. 1–160. [CrossRef] [Green Version]
- Yang, L.; Wang, Z.H.; Zhu, Y.Q.; Li, Z.S.; Zhou, J.H.; Huang, Z.Y.; Cen, K.F. Premixed Jet Flame Characteristics of Syngas Using OH Planar Laser Induced Fluorescence. Chin. Sci. Bull. 2011, 56, 2862–2868. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, U.; Ahrenfeldt, J.; Jensen, T.K.; Gøbel, B.; Bentzen, J.D.; Hindsgaul, C.; Sørensen, L.H. The Design, Construction and Operation of a 75kW Two-Stage Gasifier. Energy 2006, 31, 1542–1553. [Google Scholar] [CrossRef] [Green Version]
- Indrawan, N.; Thapa, S.; Bhoi, P.R.; Huhnke, R.L.; Kumar, A. Engine Power Generation and Emission Performance of Syngas Generated from Low-Density Biomass. Energy Convers. Manag. 2017, 148, 593–603. [Google Scholar] [CrossRef]
- Edenhofer, O.; Madruga, R.P.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; et al. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2011; ISBN 9781139151153. [Google Scholar]
- Hernández, J.J.; Lapuerta, M.; Monedero, E. Characterisation of Residual Char from Biomass Gasification: Effect of the Gasifier Operating Conditions. J. Clean. Prod. 2016, 138, 83–93. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The Structure Evolution of Biochar from Biomass Pyrolysis and Its Correlation with Gas Pollutant Adsorption Performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Cano, D.; Gómez-Barea, A.; Nilsson, S.; Ollero, P. Decomposition Kinetics of Model Tar Compounds over Chars with Different Internal Structure to Model Hot Tar Removal in Biomass Gasification. Chem. Eng. J. 2013, 228, 1223–1233. [Google Scholar] [CrossRef]
- Abu El-Rub, Z.; Bramer, E.a.; Brem, G. Experimental Comparison of Biomass Chars with Other Catalysts for Tar Reduction. Fuel 2008, 87, 2243–2252. [Google Scholar] [CrossRef]
- Konwar, L.J.; Boro, J.; Deka, D. Review on Latest Developments in Biodiesel Production Using Carbon-Based Catalysts. Renew. Sustain. Energy Rev. 2014, 29, 546–564. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havilah, P.R.; Sharma, A.K.; Govindasamy, G.; Matsakas, L.; Patel, A. Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies 2022, 15, 3938. https://doi.org/10.3390/en15113938
Havilah PR, Sharma AK, Govindasamy G, Matsakas L, Patel A. Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies. 2022; 15(11):3938. https://doi.org/10.3390/en15113938
Chicago/Turabian StyleHavilah, Pulla Rose, Amit Kumar Sharma, Gopalakrishnan Govindasamy, Leonidas Matsakas, and Alok Patel. 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas" Energies 15, no. 11: 3938. https://doi.org/10.3390/en15113938
APA StyleHavilah, P. R., Sharma, A. K., Govindasamy, G., Matsakas, L., & Patel, A. (2022). Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies, 15(11), 3938. https://doi.org/10.3390/en15113938