Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors †
Abstract
:1. Introduction
2. Analytical Model
2.1. Preliminary Derivation of TMS Analytical Model
2.2. Post-Modification
2.2.1. The Effect of Slot Dimension
2.2.2. The Effect of Copper Fill Factor
3. Temperature Distribution of DSOF Motors Based on Fluid-Thermal Coupling Analysis
3.1. Viscous Drag Loss at Different Temperature
3.2. The Need for a Viscous Loss UDF and Viscosity UDF
3.3. Temperature Distribution of DSOF Motor
4. Thermo-Mechanical Simulation and Lifetime Analysis of the DSOF Motor
4.1. Thermo-Mechanical Simulation
4.2. Insulation Degradation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silwal, B.; Sergeant, P. Thermally induced mechanical stress in the stator windings of electrical machines. Energies 2018, 11, 2113. [Google Scholar] [CrossRef] [Green Version]
- Osada, M.; Zhang, G.; Carneiro, F.; Muromachi, M.; Yoshimoto, S.; Yamamoto, A. Effect of insulating liquid viscosity on output force of a high-power synchronous electrostatic motor. Int. J. Mech. Sci. 2022, 220, 107149. [Google Scholar] [CrossRef]
- Bell, S.B.; Blair, A.C.; Wagner, L.N.; Zou, V.; Buendia, A.R.; Ashrafzadeh, F. Survey of computational fluid dynamics software for rotational purposes. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019; Volume 59421, p. V005T07A014. [Google Scholar]
- Min, F.; Hai, Y.; Zhaoyang, Y.; Wenliang, W.; Chunxu, M. Coupling calculation of 3d whole domain steady flow and temperature field for underwater oil-filled brushless dc motors. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–6. [Google Scholar]
- Torres, R.A.; Dai, H.; Jahns, T.M.; Sarlioglu, B.; Lee, W. Cooling design of integrated motor drives using analytical thermal model, finite element analysis, and computational fluid dynamics. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; p. 1509. [Google Scholar]
- Czerny, B.; Khatibi, G.; Liedtke, M.; Nicolics, J. Thermomechanical reliability investigation of insulated gate bipolar transistor module. In Proceedings of the 2018 41st International Spring Seminar on Electronics Technology (ISSE), Zlatibor, Serbia, 16–20 May 2018. [Google Scholar]
- Chen, Y.; Li, B.; Wang, X.; Yan, Y.; Wang, Y.; Qi, F. Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for igbt power module. Therm. Sci. Eng. Prog. 2019, 10, 73–81. [Google Scholar] [CrossRef]
- Shao, S.; Niu, Y.; Wang, J.; Liu, R.; Park, S.; Lee, H.; Yip, L.; Refai-Ahmed, G. Design guideline on board-level thermomechanical reliability of 2.5 d package. Microelectron. Reliab. 2020, 111, 113701. [Google Scholar] [CrossRef]
- Reddy, V.V.; Ume, I.C.; Williamson, J.; Sitaraman, S.K. Evaluation of the quality of bga solder balls in fcbga packages subjected to thermal cycling reliability test using laser ultrasonic inspection technique. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 589–597. [Google Scholar] [CrossRef]
- Panduranga, R.; Shivakumar, K. Mode-ii total fatigue life model for unidirectional im7/8552 carbon/epoxy composite laminate. Int. J. Fatigue 2017, 94, 97–109. [Google Scholar] [CrossRef]
- Lekakh, S.N.; Buchely, M.; O’Malley, R.; Godlewski, L.; Li, M. Thermo-cycling fatigue of simo ductile iron using a modified thermo-mechanical test. Int. J. Fatigue 2021, 148, 106218. [Google Scholar] [CrossRef]
- IEEE Std 56–2016; IEEE Guide for Insulation Maintenance of Electric Machines-Redline. IEEE: New York, NY, USA, 2016; pp. 1–233.
- Huang, Z.; Reinap, A.; Alaküla, M. Degradation and fatigue of epoxy impregnated traction motors due to thermal and thermal induced mechanical stress-part i: Thermal mechanical simulation of single wire due to evenly distributed temperature. In Proceedings of the 8th International Conference on Power Electronics, Machines and Drives PEMD, Glasgow, UK, 19–21 April 2016. [Google Scholar]
- Silwal, B.; Mohamed, A.H.; Nonneman, J.; Paepe, M.D.; Sergeant, P. Assessment of different cooling techniques for reduced mechanical stress in the windings of electrical machines. Energies 2019, 12, 1967. [Google Scholar] [CrossRef] [Green Version]
- Yeo, W.; Purbolaksono, J.; Aliabadi, M.; Ramesh, S.; Liew, H. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading. Int. J. Press. Vessel. Pip. 2017, 151, 45–53. [Google Scholar] [CrossRef]
- Evci, C.; Gülgeç, M. Functionally graded hollow cylinder under pressure and thermal loading: Effect of material parameters on stress and temperature distributions. Int. J. Eng. Sci. 2018, 123, 92–108. [Google Scholar] [CrossRef]
- Salifu, S.; Desai, D.; Kok, S.; Ogunbiyi, O. Thermo-mechanical stress simulation of unconstrained region of straight x20 steam pipe. Procedia Manuf. 2019, 35, 1330–1336. [Google Scholar] [CrossRef]
- Li, J. Loss and Temperautre Field Analysis for Deep-Sea Brushless dc Motor. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
- Asami, F.; Miyatake, M.; Yoshimoto, S.; Tanaka, E.; Yamauchi, T. A method of reducing windage power loss of a high-speed motor using a viscous vacuum pump. Precis. Eng. 2017, 48, 60–66. [Google Scholar] [CrossRef]
- Kelkar, M.S.; Maginn, E.J. Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide as studied by atomistic simulations. J. Phys. Chem. B 2007, 111, 4867–4876. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Griffiths, P.; Hussain, Z.; Garrett, S.J. On the stability of a heated rotating-disk boundary layer in a temperature-dependent viscosity fluid. Phys. Fluids 2020, 32, 024105. [Google Scholar] [CrossRef]
- Chen, W.; Fan, C. Non-newtonian fluid machanics. Chin. J. Nat. 1985, 8, 243–247. [Google Scholar]
- Ramos, E.A.; Treviño, C.; Lizardi, J.J.; Méndez, F. Non-isothermal effects in the slippage condition and absolute viscosity for an electroosmotic flow. Eur. J. Mech.-B/Fluids 2022, 93, 29–41. [Google Scholar] [CrossRef]
- Kacem, R.; Alzamel, N.; Ouerfelli, N. Sensitivity of viscosity arrhenius parameters to polarity of liquids. Russ. J. Phys. Chem. A 2017, 91, 1654–1659. [Google Scholar] [CrossRef]
- Huang, Z.; Reinap, A.; Alaküla, M. Degradation and fatigue of epoxy impregnated traction motors due to thermal and thermal induced mechanical stress-part ii: Thermal mechanical simulation of multiple wires due to evenly and unevenly distributed temperature. In Proceedings of the 8th International Conference on Power Electronics, Machines and Drives PEMD, Glasgow, UK, 19–21 April 2016. [Google Scholar]
- Griffo, A.; Tsyokhla, I.; Wang, J. Lifetime of machines undergoing thermal cycling stress. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 3831–3836. [Google Scholar]
Component | Temperature (K) | |||||
---|---|---|---|---|---|---|
Minimum | Maximum | Average | ||||
No UDFs | With UDFs | No UDFs | With UDFs | No UDFs | With UDFs | |
Windings | 331.7 | 325.1 | 332.7 | 326.1 | 332.2 | 325.6 |
Rotor | 332.1 | 325.2 | 333.8 | 326.4 | 333.0 | 325.8 |
Magnets | 333.9 | 326.5 | 335.2 | 327.6 | 334.7 | 327.2 |
Shaft | 327.2 | 321.2 | 331.9 | 325.0 | 330.8 | 324.1 |
Stator | 326.0 | 320.3 | 331.2 | 324.6 | 328.3 | 322.2 |
Properties | Electrical Sheet | Polymer Coating | Epoxy Impregnation |
---|---|---|---|
Young’s modulus (MPa) | 2 × | 7.4 × | 3.5 × |
Poisson’s ratio | 0.29 | 0.42 | 0.34 |
Coefficient of thermal expansion (1/K) | 1.2 × | 1.6 × | 5 × |
Thermal conductivity (W/m·K) | 28 | 0.2 | 0.21 |
Heat capacity (J/kg·K) | 440 | 1090 | 400 |
Density (kg/) | 7650 | 1530 | 1180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, R.; Fang, Y.; Lin, Y. Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors. Energies 2022, 15, 3963. https://doi.org/10.3390/en15113963
Zhang J, Wang R, Fang Y, Lin Y. Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors. Energies. 2022; 15(11):3963. https://doi.org/10.3390/en15113963
Chicago/Turabian StyleZhang, Jian, Rui Wang, Youtong Fang, and Yuan Lin. 2022. "Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors" Energies 15, no. 11: 3963. https://doi.org/10.3390/en15113963
APA StyleZhang, J., Wang, R., Fang, Y., & Lin, Y. (2022). Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors. Energies, 15(11), 3963. https://doi.org/10.3390/en15113963