A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators
Abstract
:1. Introduction
2. Energy System Resilience Indicators
- The authors’ expert opinions and many years of academic and practical experience in the energy sector, including energy security, critical energy infrastructures, reliability, risk analysis, and related topics. The authors’ experience spans both the national and international levels.
- Literature review of other authors on energy system resilience
2.1. Ability/Capacity Indicators
- (1)
- Diversity of primary energy sources or fuels
- (2)
- Diversity in the energy production mix
- (3)
- Diversity in installed energy capacity
- (a)
- Number of energy supply, production and installed energy technologies
- (b)
- Share of energy supply, production and installed energy technologies
- (c)
- Diversity indicators (SWI and HHI)
2.2. Performance-Based Indicators
3. Energy System Model
3.1. Energy System Modeling Tool
3.2. Model Structure and Key Modeling Assumptions
3.3. Data
3.4. Scenarios
- D1.
- The loss of energy import sources;
- D2.
- The loss of natural gas supply;
- D3.
- The loss of biomass supply;
- D4.
- The loss of wind PPs (both onshore and offshore) in electricity production.
4. Modeling Results
4.1. Installed Capacity and Electricity Production
4.2. Resilience Indicators under Hypothetical Disruptions in the Energy System
4.2.1. The Loss of Electricity Import Sources (D1)
4.2.2. The Loss of Natural Gas Supply (D2)
4.2.3. The Loss of Biomass Supply (D3)
4.2.4. The Loss of Wind Generators (D4)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission (Directorate-General for Energy). Clean Energy for All Europeans; European Commission (Directorate-General for Energy): Brussels, Belgium, 2019; ISBN 9789279998430. [Google Scholar]
- European Commission. Energy and the Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en (accessed on 17 May 2022).
- International Energy Agency (IEA). Making the Energy Sector More Resilient to Climate Change; International Energy Agency: Paris, France, 2015; p. 16. [Google Scholar]
- Chaudry, M.; Ekins, P.; Ramachandran, K.; Shakoor, A.; Skea, J.; Strbac, G.; Wang, X.; Whitaker, J. Building a Resilient UK Energy System: Working Paper; The UK Energy Research Centre: London, UK, 2009. [Google Scholar]
- Jewell, J. The IEA Model of Short-Term Energy Security (MOSES)—Primary Energy Sources and Secondary Fuels; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Espinoza, S.; Panteli, M.; Mancarella, P.; Rudnick, H. Multi-phase assessment and adaptation of power systems resilience to natural hazards. Electr. Power Syst. Res. 2016, 136, 352–361. [Google Scholar] [CrossRef]
- Ciapessoni, E.; Cirio, D.; Pitto, A.; Panteli, M.; Van Harte, M.; Mak, C. Defining Power System Resilience. Electra 2019, 306, 32–34. [Google Scholar]
- Molyneaux, L.; Brown, C.; Wagner, L.; Foster, J. Measuring resilience in energy systems: Insights from a range of disciplines. Renew. Sustain. Energy Rev. 2016, 59, 1068–1079. [Google Scholar] [CrossRef] [Green Version]
- Gholami, A.; Shekari, T.; Amirioun, M.H.; Aminifar, F.; Amini, M.H.; Sargolzaei, A. Toward a consensus on the definition and taxonomy of power system resilience. IEEE Access 2018, 6, 32035–32053. [Google Scholar] [CrossRef]
- Arghandeh, R.; Von Meier, A.; Mehrmanesh, L.; Mili, L. On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 2016, 58, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Azzuni, A.; Breyer, C. Definitions and dimensions of energy security: A literature review. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e268. [Google Scholar] [CrossRef]
- Jewell, J.; Cherp, A.; Riahi, K. Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices. Energy Policy 2014, 65, 743–760. [Google Scholar] [CrossRef]
- Sovacool, B.K. Evaluating energy security in the Asia pacific: Towards a more comprehensive approach. Energy Policy 2011, 39, 7472–7479. [Google Scholar] [CrossRef]
- Cherp, A.; Jewell, J. The concept of energy security: Beyond the four as. Energy Policy 2014, 75, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Gracceva, F.; Zeniewski, P. A systemic approach to assessing energy security in a low-carbon EU energy system. Appl. Energy 2014, 123, 335–348. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K. A Bayesian network model for resilience-based supplier selection. Int. J. Prod. Econ. 2016, 180, 68–87. [Google Scholar] [CrossRef]
- Shen, L.; Cassottana, B.; Tang, L.C. Statistical trend tests for resilience of power systems. Reliab. Eng. Syst. Saf. 2018, 177, 138–147. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events. IEEE Syst. J. 2017, 11, 1733–1742. [Google Scholar] [CrossRef]
- Fang, Y.P.; Sansavini, G. Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience. Reliab. Eng. Syst. Saf. 2019, 185, 1–11. [Google Scholar] [CrossRef]
- Senkel, A.; Bode, C.; Schmitz, G. Quantification of the resilience of integrated energy systems using dynamic simulation. Reliab. Eng. Syst. Saf. 2021, 209, 107447. [Google Scholar] [CrossRef]
- Ahmadi, S.; Khorasani, A.H.F.; Vakili, A.; Saboohi, Y.; Tsatsaronis, G. Developing an innovating optimization framework for enhancing the long-term energy system resilience against climate change disruptive events. Energy Strateg. Rev. 2022, 40, 100820. [Google Scholar] [CrossRef]
- Chen, B.; Chen, C.; Wang, J.; Butler-Purry, K.L. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids. IEEE Trans. Smart Grid 2018, 9, 6793–6805. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, J.; Qiu, F.; Chen, C.; Kang, C.; Zeng, B. Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans. Smart Grid 2016, 7, 2817–2826. [Google Scholar] [CrossRef]
- Nezamoddini, N.; Mousavian, S.; Erol-Kantarci, M. A risk optimization model for enhanced power grid resilience against physical attacks. Electr. Power Syst. Res. 2017, 143, 329–338. [Google Scholar] [CrossRef]
- Fotouhi, H.; Moryadee, S.; Miller-Hooks, E. Quantifying the resilience of an urban traffic-electric power coupled system. Reliab. Eng. Syst. Saf. 2017, 163, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Almoghathawi, Y.; Barker, K.; Albert, L.A. Resilience-driven restoration model for interdependent infrastructure networks. Reliab. Eng. Syst. Saf. 2019, 185, 12–23. [Google Scholar] [CrossRef]
- Uemichi, A.; Yagi, M.; Oikawa, R.; Yamasaki, Y.; Kaneko, S. Multi-objective optimization to determine installation capacity of distributed power generation equipment considering energy-resilience against disasters. Energy Procedia 2019, 158, 6538–6543. [Google Scholar] [CrossRef]
- Javadi, E.A.; Joorabian, M.; Barati, H. A sustainable framework for resilience enhancement of integrated energy systems in the presence of energy storage systems and fast-acting flexible loads. J. Energy Storage 2022, 49, 104099. [Google Scholar] [CrossRef]
- Li, X.; Du, X.; Jiang, T.; Zhang, R.; Chen, H. Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events. Appl. Energy 2022, 309, 118455. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Ma, Z.; Gu, W.; Zhang, X.P.; Lu, Y.; Liu, P. Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination. Energy 2022, 241, 122834. [Google Scholar] [CrossRef]
- Hoettecke, L.; Thiem, S.; Schäfer, J.; Niessen, S. Resilience optimization of multi-modal energy supply systems: Case study in German metal industry. Comput. Chem. Eng. 2022, 162, 107824. [Google Scholar] [CrossRef]
- Thompson, J.R.; Frezza, D.; Necioglu, B.; Cohen, M.L.; Hoffman, K.; Rosfjord, K. Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure. Int. J. Crit. Infrastruct. Prot. 2019, 24, 144–165. [Google Scholar] [CrossRef]
- Dehghanpour, K.; Colson, C.; Nehrir, H. A survey on smart agent-based microgrids for resilient/self-healing grids. Energies 2017, 10, 620. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, M.; Soetanto, D.; Su, X. Conceptual design of a multi-agent system for interconnected power systems restoration. IEEE Trans. Power Syst. 2012, 27, 732–740. [Google Scholar] [CrossRef]
- Nan, C.; Sansavini, G. A quantitative method for assessing resilience of interdependent infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35–53. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P.; Trakas, D.N.; Kyriakides, E.; Hatziargyriou, N.D. Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems. IEEE Trans. Power Syst. 2017, 32, 4732–4742. [Google Scholar] [CrossRef] [Green Version]
- Jufri, F.H.; Widiputra, V.; Jung, J. State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies. Appl. Energy 2019, 239, 1049–1065. [Google Scholar] [CrossRef]
- Roege, P.E.; Collier, Z.A.; Mancillas, J.; McDonagh, J.A.; Linkov, I. Metrics for energy resilience. Energy Policy 2014, 72, 249–256. [Google Scholar] [CrossRef]
- Mujjuni, F.; Betts, T.; To, L.S.; Blanchard, R.E. Resilience a means to development: A resilience assessment framework and a catalogue of indicators. Renew. Sustain. Energy Rev. 2021, 152, 111684. [Google Scholar] [CrossRef]
- Raoufi, H.; Vahidinasab, V.; Mehran, K. Power systems resilience metrics: A comprehensive review of challenges and outlook. Sustainability 2020, 12, 9698. [Google Scholar] [CrossRef]
- Watson, J.-P.; Guttromson, R.; Silva-Monroy, C.; Jeffers, R.; Jones, K.; Ellison, J.; Rath, C.; Gearhart, J.; Jones, D.; Corbet, T.; et al. Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States; Office of Electricity: Washington, DC, USA, 2015. [Google Scholar]
- Vugrin, E.; Castillo, A.; Silva-Monroy, C. Resilience Metrics for the Electric Power System: A Performance-Based Approach; Sandia National Laboratories: Albuquerque, NM, USA, 2017. [Google Scholar]
- Binder, C.R.; Mühlemeier, S.; Wyss, R. An indicator-based approach for analyzing the resilience of transitions for energy regions. Part I: Theoretical and conceptual considerations. Energies 2017, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Gasser, P.; Cinelli, M.; Labijak, A.; Spada, M.; Burgherr, P.; Kadziński, M.; Stojadinović, B. Quantifying electricity supply resilience of countries with robust efficiency analysis. Energies 2020, 13, 1535. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, W.; Shi, Q.; Huang, Y.; Huang, S. Resilience assessment of multi-decision complex energy interconnection system. Int. J. Electr. Power Energy Syst. 2022, 137, 107809. [Google Scholar] [CrossRef]
- Zhao, Q.; Du, Y.; Zhang, T.; Zhang, W. Resilience index system and comprehensive assessment method for distribution network considering multi-energy coordination. Int. J. Electr. Power Energy Syst. 2021, 133, 107211. [Google Scholar] [CrossRef]
- Karagiannis, M.G.; Chondrogiannis, S.; Krausmann, E.; Turksezer, Z. Power grid recovery after natural hazard impact. Jt. Res. Cent. Eur. Union 2017. [Google Scholar] [CrossRef]
- Kruyt, B.; van Vuuren, D.P.; de Vries, H.J.M.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Stirling, A. Diversity and ignorance in electricity supply investment. Addressing the solution rather than the problem. Energy Policy 1994, 22, 195–216. [Google Scholar] [CrossRef]
- Fedor, P.J.; Spellerberg, I.F. Shannon–Wiener Index. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Grubb, M.; Butler, L.; Twomey, P. Diversity and security in UK electricity generation: The influence of low-carbon objectives. Energy Policy 2006, 34, 4050–4062. [Google Scholar] [CrossRef] [Green Version]
- Martišauskas, L.; Augutis, J.; Krikštolaitis, R. Methodology for energy security assessment considering energy system resilience to disruptions. Energy Strateg. Rev. 2018, 22, 106–118. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System. An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- OSeMOSYS—Home. Available online: http://www.osemosys.org/ (accessed on 18 February 2022).
- REEEM Home|REEEM. Available online: https://www.reeem.org/ (accessed on 24 February 2022).
- REEEM-D6.2_Regional Energy Security Case Study of the Baltic Region and Finland|Zenodo. Available online: https://zenodo.org/record/3368544#.Yhc2mZaxWUk (accessed on 24 February 2022).
- Henke, H.T.J.; Gardumi, F.; Howells, M. The open source electricity Model Base for Europe—An engagement framework for open and transparent European energy modelling. Energy 2022, 239, 121973. [Google Scholar] [CrossRef]
- Times|REEEM. Available online: https://www.reeem.org/times/ (accessed on 25 February 2022).
- Lithuanian Electricity Transmission System Operator LITGRID report. In Development Plan of the Electric Power System and Transmission Grid 2021-2030; LITGRID: Vilnius, Lithuania, 2021; p. 54. Available online: https://www.litgrid.eu/index.php/grid-development-/-electricity-transmission-grid-ten-year-development-plan/3851 (accessed on 25 February 2022).
- Open Energy Platform. Available online: https://openenergy-platform.org/dataedit/view/scenario?query=mesca (accessed on 25 February 2022).
- REEEM-D1.2a_First Integrated Impact Report|Zenodo. Available online: https://zenodo.org/record/3366029#.YhiWiJaxWUk (accessed on 25 February 2022).
- 2020 Climate & Energy Package. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2020-climate-energy-package_en (accessed on 25 February 2022).
- 2030 Climate & ENERGY framework. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (accessed on 25 February 2022).
- Roadmap 2050. Available online: https://www.roadmap2050.eu/ (accessed on 25 February 2022).
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 25 February 2022).
- Ministry of Energy of the Republic of Lithuania. National Energy Independence Strategy of the Republic of Lithuania; Ministry of Energy of the Republic of Lithuania: Vilnius, Lithuania, 2018. [Google Scholar]
Scenario | Type of Share | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|---|
SC1 (Base) | Share of RES | 23% | 36% | 56% | 75% |
Share of generation | 20% | 50% | 65% | 80% | |
SC2 (High RES) | Share of RES | 30% | 45% | 72.5% | 100% |
Share of generation | 35% | 70% | 85% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martišauskas, L.; Augutis, J.; Krikštolaitis, R.; Urbonas, R.; Šarūnienė, I.; Kopustinskas, V. A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators. Energies 2022, 15, 4040. https://doi.org/10.3390/en15114040
Martišauskas L, Augutis J, Krikštolaitis R, Urbonas R, Šarūnienė I, Kopustinskas V. A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators. Energies. 2022; 15(11):4040. https://doi.org/10.3390/en15114040
Chicago/Turabian StyleMartišauskas, Linas, Juozas Augutis, Ričardas Krikštolaitis, Rolandas Urbonas, Inga Šarūnienė, and Vytis Kopustinskas. 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators" Energies 15, no. 11: 4040. https://doi.org/10.3390/en15114040
APA StyleMartišauskas, L., Augutis, J., Krikštolaitis, R., Urbonas, R., Šarūnienė, I., & Kopustinskas, V. (2022). A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators. Energies, 15(11), 4040. https://doi.org/10.3390/en15114040