Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method
Abstract
:1. Introduction
- A new PV forecasting structure that incorporates K-means clustering, RF models, and the regression-based method with LASSO and Ridge regularizations is used to increase forecasting accuracy.
- A regression-based ensemble learning with Bayesian optimization is used with LASSO and Ridge regularization to calculate the five optimal sets of weight coefficients, which allows us to determine which predictors in the model are significant.
- The regression-based method is easier to implement and has fewer hyperparameters compared to the stacking RNN method. The results show that the proposed regression-based method outperforms the benchmark stacking RNN by 2%.
2. Modelling and Methodologies
2.1. The K-Means Model
- The initial centers of each group, K samples, are chosen at random to eliminate the dimensional effects. Each feature is normalized using the min-max method.
- Samples are assigned to groups based on their Euclidean distance from the center of the group, and the group with the smallest Euclidean distance is chosen for each sample.
- The centers of each group are recalculated using the sample data for each group, and the results are output if none of the centers are changed.
- Steps 2 and 3 are repeated until convergence is achieved.
- K-means clustering is performed on a given dataset for various K values.
- The WCSS value is calculated for each value of K.
- A line is drawn between the calculated WCSS values and the number of clusters K.
- When the point on the plot looks like an arm, it has the best value for K.
2.2. The Random Forest Model
2.3. The Stacking RNN Ensemble Method
2.4. The Ensemble Combination Strategy
2.4.1. The Linear Regression (LR) Model
- -
- LASSO regression:
- -
- Ridge regression:
2.4.2. The Support Vector Regression (SVR) Model
2.4.3. Bayesian Optimization
2.5. Setup Modelling
2.5.1. Data Preprocessing
2.5.2. Datasets
2.5.3. Evaluation Criteria
3. Ensemble Forecasting Strategy
4. PV Power Forecasting Simulation Results
4.1. Test System
4.2. Hyperparameters Setting for the RF and Ensemble Models
4.3. Short-Term PV Power Output Forecasting
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
ARMA | Autoregressive moving average |
ARIMA | Autoregressive integrated moving average |
CNN | Convolutional neural network |
DNN | Deep neural network |
ET | Extra trees |
ETS | Exponential smoothing |
FNN | Feedforward neural network |
GRU | Gated recurrent unit |
KNN | K-nearest neighbors |
LASSO | Least absolute shrinkage and selection operator |
LR | Linear regression |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
MARS | Multivariate Adaptive regression spline |
MLP | Multilayer perceptron |
MRE | Mean relative error |
MSE | Mean squared error |
nMAE | Normalized mean absolute error |
nMBE | Normalized mean bias error |
nRMSE | Normalized root mean squared error |
NWP | Numerical weather prediction |
OLS | Ordinary least square |
PCA | Principal component analysis |
PCC | Pearson correlation coefficient |
R2 | Coefficient of determination |
RBF | Radial basis function |
RF | Random forest |
RMSE | Root mean squared error |
RNN | Recurrent neural network |
SARIMA | Seasonal autoregressive integrated moving average |
SVM | Support vector machine |
SVR | Support vector regression |
VAR | Vector autoregressive |
WCSS | Within cluster sum of squares |
XGBoost | Extreme gradient boosting |
References
- Javaid, N.; Hafeez, G.; Iqbal, S.; Alrajeh, N.; Alabed, M.S.; Guizani, M. Energy efficient integration of renewable energy sources in the smart grid for demand side management. IEEE Access 2018, 6, 77077–77096. [Google Scholar] [CrossRef]
- Shahid, A. Smart grid integration of renewable energy systems. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018. [Google Scholar]
- Ullah, Z.; Asghar, R.; Khan, I.; Ullah, K.; Waseem, A.; Wahab, F.; Haider, A.; Ali, S.M.; Jan, K.U. Renewable energy resources penetration within smart grid: An overview. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020. [Google Scholar]
- Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and solar power forecasting for Smart Grid Energy Management. CSEE J. Power Energy Syst. 2015, 1, 38–46. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Yang, S. Photovoltaic power forecasting: Models and methods. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2) 2018, Beijing, China, 20–22 October 2018. [Google Scholar]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Rafati, A.; Joorabian, M.; Mashhour, E.; Shaker, H.R. High dimensional very short-term solar power forecasting based on a data-driven heuristic method. Energy 2021, 219, 119647. [Google Scholar] [CrossRef]
- Son, N.; Jung, M. Analysis of meteorological factor multivariate models for medium- and long-term photovoltaic solar power forecasting using long short-term memory. Appl. Sci. 2020, 11, 316. [Google Scholar] [CrossRef]
- Mellit, A.; Massi Pavan, A.; Ogliari, E.; Leva, S.; Lughi, V. Advanced methods for photovoltaic output power forecasting: A Review. Appl. Sci. 2020, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- Massaoudi, M.; Chihi, I.; Abu-Rub, H.; Refaat, S.S.; Oueslati, F.S. Convergence of photovoltaic power forecasting and Deep Learning: State-of-art review. IEEE Access 2021, 9, 136593–136615. [Google Scholar] [CrossRef]
- Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239. [Google Scholar] [CrossRef]
- Wolff, B.; Kühnert, J.; Lorenz, E.; Kramer, O.; Heinemann, D. Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, Numerical Weather Prediction, and Cloud Motion Data. Sol. Energy 2016, 135, 197–208. [Google Scholar] [CrossRef]
- Singh, B.; Pozo, D. A guide to solar power forecasting using arma models. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar]
- Preda, S.; Oprea, S.-V.; Bâra, A.; Belciu, A. PV forecasting using support vector machine learning in a big data analytics context. Symmetry 2018, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Li, X.; Sun, Q.; Nie, L.; Yao, J.; Zhao, G. A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks. Energies 2015, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Park, Y.; Lee, J.; Kim, H. Sensorless PV power forecasting in grid-connected buildings through deep learning. Sensors 2018, 18, 2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, M.; Song, C. Daily photovoltaic power generation forecasting model based on random forest algorithm for north China in winter. Sustainability 2020, 12, 2247. [Google Scholar] [CrossRef] [Green Version]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Mohamed Shah, N. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Sun, K. Random Forest Solar Power Forecast based on classification optimization. Energy 2019, 187, 115940. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Lughi, V. Deep Learning Neural Networks for short-term photovoltaic power forecasting. Renew. Energy 2021, 172, 276–288. [Google Scholar] [CrossRef]
- Niccolai, A.; Dolara, A.; Ogliari, E. Hybrid PV power forecasting methods: A comparison of different approaches. Energies 2021, 14, 451. [Google Scholar] [CrossRef]
- Seyedmahmoudian, M.; Jamei, E.; Thirunavukkarasu, G.; Soon, T.; Mortimer, M.; Horan, B.; Stojcevski, A.; Mekhilef, S. Short-term forecasting of the output power of a building-integrated photovoltaic system using a metaheuristic approach. Energies 2018, 11, 1260. [Google Scholar] [CrossRef] [Green Version]
- Aprillia, H.; Yang, H.-T.; Huang, C.-M. Short-term photovoltaic power forecasting using a convolutional neural network–salp swarm algorithm. Energies 2020, 13, 1879. [Google Scholar] [CrossRef]
- Yang, T.; Li, B.; Xun, Q. LSTM-attention-embedding model-based day-ahead prediction of photovoltaic power output using Bayesian optimization. IEEE Access 2019, 7, 171471–171484. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting. Appl. Sci. 2017, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Mahmood, H. Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast. IEEE Access 2020, 8, 172524–172533. [Google Scholar] [CrossRef]
- Massaoudi, M.; Abu-Rub, H.; Refaat, S.S.; Trabelsi, M.; Chihi, I.; Oueslati, F.S. Enhanced deep belief network based on ensemble learning and tree-structured of parzen estimators: An Optimal Photovoltaic Power Forecasting Method. IEEE Access 2021, 9, 150330–150344. [Google Scholar] [CrossRef]
- Yang, D.; Dong, Z. Operational Photovoltaics Power Forecasting using seasonal time series ensemble. Sol. Energy 2018, 166, 529–541. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy 2018, 164, 465–474. [Google Scholar] [CrossRef]
- Wang, J.; Qian, Z.; Wang, J.; Pei, Y. Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. Energies 2020, 13, 3259. [Google Scholar] [CrossRef]
- Lateko, A.A.H.; Yang, H.-T.; Huang, C.-M.; Aprillia, H.; Hsu, C.-Y.; Zhong, J.-L.; Phương, N.H. Stacking Ensemble method with the RNN meta-learner for short-term PV power forecasting. Energies 2021, 14, 4733. [Google Scholar] [CrossRef]
- Eom, H.; Son, Y.; Choi, S. Feature-Selective Ensemble Learning-based long-term regional PV generation forecasting. IEEE Access 2020, 8, 54620–54630. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, W.; Gong, X. Short-term photovoltaic power output prediction based on k-fold cross-validation and an ensemble model. Energies 2019, 12, 1220. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Tan, J. Day-ahead hourly forecasting of solar generation based on cluster analysis and Ensemble Model. IEEE Access 2019, 7, 112921–112930. [Google Scholar] [CrossRef]
- Liu, L.; Zhan, M.; Bai, Y. A recursive ensemble model for forecasting the power output of photovoltaic systems. Sol. Energy 2019, 189, 291–298. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, W.; Chang, Y. Gated recurrent unit network-based short-term photovoltaic forecasting. Energies 2018, 11, 2163. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-K.; Lai, Y.-H.; Huang, C.-L.; Phuong, N.T.; Tan, W.-S. Artificial Intelligence Applications in estimating invisible solar power generation. Energies 2022, 15, 1312. [Google Scholar] [CrossRef]
- Bajpai, A.; Duchon, M. A Hybrid approach of solar power forecasting using machine learning. In Proceedings of the 2019 3rd International Conference on Smart Grid and Smart Cities (ICSGSC), Berkeley, CA, USA, 25–28 June 2019. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Wang, K.; Sun, L.; Wu, J.; Xu, X. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Appl. Soft Comput. 2020, 93, 106389. [Google Scholar] [CrossRef]
- Kim, Y.; Hur, J. An ensemble forecasting model of wind power outputs based on improved statistical approaches. Energies 2020, 13, 1071. [Google Scholar] [CrossRef] [Green Version]
- Tao, D.; Ma, Q.; Li, S.; Xie, Z.; Lin, D.; Li, S. Support vector regression for the relationships between ground motion parameters and macroseismic intensity in the SICHUAN–Yunnan region. Appl. Sci. 2020, 10, 3086. [Google Scholar] [CrossRef]
- Marco, R.; Ahmad, S.S.; Ahmad, S. Bayesian hyperparameter optimization and Ensemble Learning for Machine Learning Models on software effort estimation. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 419–429. [Google Scholar] [CrossRef]
- Solcast API Toolkit. Available online: https://toolkit.solcast.com.au/weather-sites/48bb-7a5e-a09e-227f/detail (accessed on 25 March 2022).
- Jebli, I.; Belouadha, F.-Z.; Kabbaj, M.I.; Tilioua, A. Prediction of solar energy guided by Pearson Correlation Using Machine Learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]
- Yang, H.-T.; Huang, C.-M.; Huang, Y.-C.; Pai, Y.-S. A weather-based hybrid method for 1-day ahead hourly forecasting of PV Power Output. IEEE Trans. Sustain. Energy 2014, 5, 917–926. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Abdul Salam, P. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Soto, A.-M.; Chen, G. Regression model to predict the higher heating value of poultry waste from proximate analysis. Resources 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, D. Theory-guided deep-learning for electrical load forecasting (TGDLF) via ensemble long short-term memory. Adv. Appl. Energy 2021, 1, 100004. [Google Scholar] [CrossRef]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Lin, S. Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Wang, L.; Mao, S.; Wilamowski, B.M.; Nelms, R.M. Ensemble learning for load forecasting. IEEE Trans. Green Commun. Netw. 2020, 4, 616–628. [Google Scholar] [CrossRef]
- Chen, Z.; Koprinska, I. Ensemble methods for solar power forecasting. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
Single Methods | Ensemble Method | Ref. | Error Validation | Forecasting Horizon | Resolution | Best Result |
---|---|---|---|---|---|---|
FNNs | RF | [30] | nRMSE, nMAE | 1-h | 1-h | nMAE = 2.42% |
ANN, DNN, SVR, LSTM, CNN | RNN | [31] | MRE, MAE, nRMSE, R2 | 1-day | 1-h | MRE = 4.29% |
ARIMA, VAR, LSTM | CNN | [32] | MAE, MSE, RMSE | 1-year | 1-month | MAE = 16.70 MWh |
GRU, XGBoost, MLP | Simple averaging | [33] | RMSE, MAE, MAPE | 1-day | 1-h | MAPE = 1.60% |
RFs | Weighted averaging | [34] | nMBE, nMAE, nRMSE, forecast skill | 1-day | 1-h | nMAE = 4.06% |
SVM, MLP, MARS | Weighted averaging | [35] | RMSE, MAE, MAPE | 1-day | 5-min | MAPE = 0.78% |
Weather Variables | Correlation Coefficient | t-Test | p-Values |
---|---|---|---|
Irradiance (W/m2) | 0.970 | 56.499 | 0 |
Temperature (°C) | 0.364 | −2.119 | 0.034 |
Precipitation (kg/m2) | −0.012 | 2.189 | 0.029 |
Humidity (%) | −0.521 | −2.451 | 0.014 |
Wind speed (m/s) | −0.056 | 7.975 | 2.038 × 10−15 |
Weather Conditions | Random Forest Model | Ensemble Learner | ||
---|---|---|---|---|
Training | Testing | Training | Testing | |
Sunny | 59 | 20 | 16 | 4 |
Light-cloudy | 57 | 19 | 15 | 4 |
Cloudy | 54 | 17 | 14 | 3 |
Heavy-cloudy | 27 | 11 | 8 | 3 |
Rainy | 26 | 10 | 7 | 3 |
Total | 223 | 77 | 60 | 17 |
Model | Parameters | Value |
---|---|---|
RF1 | Number of trees | 1000 |
Min leaf size | 3 | |
RF2 | Number of trees | 1000 |
Min leaf size | 3 | |
RF3 | Number of trees | 800 |
Min leaf size | 3 | |
RF4 | Number of trees | 1000 |
Min leaf size | 3 | |
RF5 | Number of trees | 200 |
Min leaf size | 3 |
Model | Parameters | Sunny | Light-Cloudy | Cloudy | Heavy-Cloudy | Rainy |
---|---|---|---|---|---|---|
Stacking RNN | Hidden layer | 1 | 1 | 1 | 1 | 1 |
Hidden neuron | 5 | 7 | 7 | 5 | 4 | |
Input delay | 2 | 2 | 2 | 2 | 2 | |
Learning rate | 0.001 | 0.05 | 0.005 | 0.005 | 0.005 | |
Proposed Method | Lambda (λ) | 4.898 × 10−5 | 5.145 × 10−6 | 1.448 × 10−5 | 1.191 × 10−4 | 0.015 |
Learner | LR | SVR | SVR | LR | SVR | |
Regularization | LASSO | LASSO | LASSO | Ridge | Ridge |
Error Validation | Weather Type | Random Forest Model | Ensemble Model | |||||
---|---|---|---|---|---|---|---|---|
RF1 | RF2 | RF3 | RF4 | RF5 | Stacking RNN | Proposed Method | ||
MRE (%) | Sunny | 21.752 | 14.846 | 11.269 | 10.066 | 7.905 | 4.495 | 3.492 |
Light-cloudy | 16.254 | 9.862 | 7.286 | 6.081 | 5.833 | 5.607 | 5.222 | |
Cloudy | 11.549 | 7.754 | 6.189 | 6.567 | 6.628 | 5.497 | 4.195 | |
Heavy-cloudy | 6.704 | 6.338 | 4.616 | 5.019 | 6.215 | 4.402 | 3.934 | |
Rainy | 1.929 | 2.478 | 1.871 | 2.204 | 4.068 | 1.760 | 1.599 | |
MAE (kW) | Sunny | 435.046 | 296.928 | 225.394 | 201.311 | 158.100 | 89.893 | 69.833 |
Light-cloudy | 325.073 | 197.232 | 145.719 | 121.612 | 116.651 | 112.130 | 104.434 | |
Cloudy | 230.982 | 155.086 | 123.781 | 131.342 | 132.556 | 109.935 | 83.902 | |
Heavy-cloudy | 134.071 | 126.755 | 92.321 | 100.389 | 124.296 | 88.047 | 78.688 | |
Rainy | 38.584 | 49.566 | 37.420 | 44.087 | 81.351 | 35.199 | 31.976 | |
R2 | Sunny | 0 | 0.372 | 0.641 | 0.718 | 0.812 | 0.941 | 0.964 |
Light-cloudy | 0 | 0.662 | 0.827 | 0.874 | 0.898 | 0.866 | 0.868 | |
Cloudy | 0.297 | 0.733 | 0.829 | 0.795 | 0.819 | 0.830 | 0.893 | |
Heavy-cloudy | 0.649 | 0.717 | 0.845 | 0.825 | 0.763 | 0.854 | 0.891 | |
Rainy | 0.830 | 0.738 | 0.829 | 0.755 | 0.268 | 0.835 | 0.865 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lateko, A.A.H.; Yang, H.-T.; Huang, C.-M. Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method. Energies 2022, 15, 4171. https://doi.org/10.3390/en15114171
Lateko AAH, Yang H-T, Huang C-M. Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method. Energies. 2022; 15(11):4171. https://doi.org/10.3390/en15114171
Chicago/Turabian StyleLateko, Andi A. H., Hong-Tzer Yang, and Chao-Ming Huang. 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method" Energies 15, no. 11: 4171. https://doi.org/10.3390/en15114171
APA StyleLateko, A. A. H., Yang, H. -T., & Huang, C. -M. (2022). Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method. Energies, 15(11), 4171. https://doi.org/10.3390/en15114171