Lattice Boltzmann Modeling of Spontaneous Imbibition in Variable-Diameter Capillaries
Abstract
:1. Introduction
2. Methodologies
2.1. Lattice Boltzmann Color Gradient Two-Phase Flow Model
2.2. The Parallel Implementation of the Lattice Boltzmann Method
2.3. Model Verification
3. Results with Discussion
3.1. The Setting of Variable-Diameter Capillaries
3.2. The Simulated Results and Analysis
3.2.1. Results and Analysis of Spontaneous Imbibition with Snap-Off
3.2.2. Results and Analysis of Spontaneous Imbibition without Snap-Off
4. Conclusions
- The existence of the variable diameter makes the snap-off occur, which reduces the recovery of the non-wetting phase.
- The pore-throat aspect ratio and the pore-throat tortuosity are the main factors affecting the snap-off. The larger the pore-throat aspect ratio, the more easily snap-off occurs. When the pore-throat aspect is less than 3.7, regardless of how the pore-throat changes, it will not cause the snap-off.
- When the snap-off does not occur, the interface moving velocity changes during the spontaneous imbibition processes and the minimum velocity corresponds to the largest pore diameter.
- The spontaneous imbibition velocity increases when the throat diameter increases and the pore-throat aspect ratio is fixed; when the period increases, i.e., the diameter changing rate decreases, the spontaneous imbibition velocity also increases.
- When the capillary throat diameter is fixed, bigger pore diameter and smaller period of the sine function both inhibit the speed of spontaneous imbibition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
the particle distribution function for fluid k (k = r or b, where r and b indicate red and black fluids) | |
the lattice spacing | |
the time step | |
the BGK collision form | |
the second collision operator | |
specified constants | |
scalar coefficients of the gradient | |
the relaxation time | |
the equilibrium distribution function | |
the weighting factor | |
velocity components in lattice | |
the density of each fluid (k = r or b) | |
the momentum | |
the macroscopic density | |
the color gradient | |
the angle between the and the | |
the kinematic viscosity | |
the speed of sound in the lattice | |
the contact angle | |
viscosity ratios | |
the width of the model | |
the length of the model | |
the position of the imbibing leading interface | |
the viscosity of the wetting phase fluid | |
the non-wetting phase fluid | |
the interfacial tension | |
the three-phase antennae | |
the period of the variable-diameter capillary, | |
the pore diameter | |
the throat diameter | |
the amplitude of the solid boundary |
References
- Wang, X.; Peng, X.; Zhang, S.; Du, Z.; Zeng, F. Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir. Fuel 2018, 224, 280–288. [Google Scholar] [CrossRef]
- Wei, N.; Li, C.; Peng, X.; Li, Y.; Zeng, F. Daily natural gas consumption forecasting via the application of a novel hybrid model. Appl. Energy 2019, 250, 358–368. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, H.; Zhang, Y.; Liang, D. Color-gradient lattice Boltzmann modeling of immiscible two-phase flows on partially wetting surfaces. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 416–430. [Google Scholar] [CrossRef]
- Pooladi-Darvish, M.; Firoozabadi, A. Cocurrent and countercurrent imbibition in a water-wet matrix block. SPE J. 2000, 5, 3–11. [Google Scholar] [CrossRef]
- Morrow, N.R.; Mason, G. Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 2001, 6, 321–337. [Google Scholar] [CrossRef]
- Mason, G.; Morrow, N.R. Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 2013, 110, 268–293. [Google Scholar] [CrossRef]
- Sheng, J.J. What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs? J. Pet. Sci. Eng. 2017, 159, 635–643. [Google Scholar] [CrossRef]
- Ding, M.; Kantzas, A. Estimation of residual gas saturation from different reservoirs. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 8–10 June 2004. [Google Scholar]
- Wang, M.; Yang, S.; Wu, R.; Jiang, L.; Bao, J. Typical problems and research methods in the study of imbibition. Petrochem. Ind. Appl. 2016, 35, 1–4. [Google Scholar]
- Wei, F.; Yue, X.; Zhang, J. Effect of surfactant on surface properties and imbibition behavior of low permeability oil wet limestone. Oilfield Chem. 2004, 1, 52–55+67. [Google Scholar]
- Chahardowli, M.; Zholdybayeva, A.; Farajzadeh, R.; Bruining, H. Solvent-enhanced spontaneous imbibition in fractured reservoirs. In Proceedings of the EAGE Annual Conference & Exhibition Incorporating SPE Europe, London, UK, 10–13 June 2013. [Google Scholar]
- Chen, H.L.; Lucas, L.R.; Nogaret, L.A.D.; Yang, H.D.; Kenyon, D.E. Laboratory monitoring of surfactant imbibition with computerized tomography. SPE Reserv. Eval. Eng. 2001, 4, 16–25. [Google Scholar] [CrossRef]
- Shouxiang, M.; Morrow, N.R.; Zhang, X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. Pet. Sci. Eng. 1997, 18, 165–178. [Google Scholar] [CrossRef]
- Sheng, J.J. Review of surfactant enhanced oil recovery in carbonate reservoirs. Adv. Pet. Explor. Dev. 2013, 6, 1–10. [Google Scholar]
- Kathel, P.; Mohanty, K.K. EOR in tight oil reservoirs through wettability alteration. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Mora, P.; Morra, G.; Yuen, D.A.; Juanes, R. Optimal wetting angles in Lattice Boltzmann simulations of viscous fingering. Transp. Porous Media 2021, 136, 831–842. [Google Scholar] [CrossRef]
- Cai, J.; Perfect, E.; Cheng, C.L.; Hu, X. Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 2014, 30, 5142–5151. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Chen, Z.; Xie, C.; Wang, Z.; Lei, Z.; Ju, Y.; Wang, M. Characterization of spontaneous imbibition dynamics in irregular channels by mesoscopic modeling. Comput. Fluids 2018, 168, 21–31. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, J.; Sahimi, M.; Qin, C. A study of the role of microfractures in counter-current spontaneous imbibition by lattice Boltzmann simulation. Transp. Porous Media 2020, 133, 313–332. [Google Scholar] [CrossRef]
- Yu, L.; Wardlaw, N.C. Mechanisms of nonwetting phase trapping during imbibition at slow rates. J. Colloid Interface Sci. 1986, 109, 473–486. [Google Scholar]
- Roof, J.G. Snap-off of oil droplets in water-wet pores. Soc. Pet. Eng. J. 1970, 10, 85–90. [Google Scholar] [CrossRef]
- Deng, W.; Balhoff, M.; Cardenas, M.B. Influence of dynamic factors on nonwetting fluid snap-off in pores. Water Resour. Res. 2015, 51, 9182–9189. [Google Scholar] [CrossRef]
- Rao, D.; Bai, B. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media. Chin. J. Geotech. Eng. 2020, 42, 170–176. [Google Scholar]
- Yang, Q.; Yao, J.; Huang, Z. Study on tortuosity and permeability of porous media based on PF-SPH. In Proceedings of the 11th National Fluid Mechanics Conference, Shenzhen, China, 3–7 December 2020. [Google Scholar]
- Dimitrov, D.I.; Milchev, A.; Binder, K. Capillary rise in nanopores: Molecular dynamics evidence for the Lucas-Washburn equation. Phys. Rev. Lett. 2007, 99, 054501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Bandilla, K.W.; Celia, M.A. Multi-physics pore-network modeling of two-phase shale matrix flows. Transp. Porous Media 2016, 111, 123–141. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, J.J. Dynamic Pore-Scale Network Modeling of Spontaneous Water Imbibition in Shale and Tight Reservoirs. Energies 2020, 13, 4709. [Google Scholar] [CrossRef]
- Huang, H.; Sukop, M.; Lu, X. Multiphase Lattice Boltzmann Methods: Theory and Application; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Sun, Y.; Kharaghani, A.; Tsotsas, E. Micro-model experiments and pore network simulations of liquid imbibition in porous media. Chem. Eng. Sci. 2016, 150, 41–53. [Google Scholar] [CrossRef]
- Rukuan, C.; Yuetian, L.; Junqiang, W.; Jing, X.; Jian, P.; Changyong, L. Molecular dynamics simulation of wettability of calcite and dolomite. Chin. J. Comput. Phys. 2019, 36, 474–482. [Google Scholar]
- Wang, F.; Zhang, Y.; Jiang, J.; Yin, B.; Li, Z. Effect of temperature on the capillary transport of sodium sulfate solution in calcium silicate hydrate nanopore: A molecular dynamics study. Constr. Build. Mater. 2020, 231, 117111. [Google Scholar] [CrossRef]
- Wörner, M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications. Microfluid. Nanofluidics 2012, 12, 841–886. [Google Scholar] [CrossRef]
- Latva-Kokko, M.; Rothman, D.H. Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 2005, 72, 046701. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.J.; Lu, X.Y. Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 2014, 93, 164–172. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Raeini, A.Q.; Wang, Y.; Blunt, M.J.; Wang, M. An improved pore-network model including viscous coupling effects using direct simulation by the lattice Boltzmann method. Adv. Water Resour. 2017, 100, 26–34. [Google Scholar] [CrossRef]
- Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S. Hybrid lattice Boltzmann method on overlapping grids. Phys. Rev. E 2017, 95, 013309. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.R.; Orlandini, E.; Osborn, W.R.; Yeomans, J.M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 1996, 54, 5041. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Valocchi, A.J.; Kang, Q.; Werth, C. Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method. Transp. Porous Media 2013, 99, 555–580. [Google Scholar] [CrossRef]
- Rothman, D.H.; Keller, J.M. Immiscible cellular-automaton fluids. J. Stat. Phys. 1988, 52, 1119–1127. [Google Scholar] [CrossRef]
- Gruener, S.; Sadjadi, Z.; Hermes, H.E.; Kityk, A.V.; Knorr, K.; Egelhaaf, S.U.; Reiger, H.; Huber, P. Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores. Proc. Natl. Acad. Sci. USA 2012, 109, 10245–10250. [Google Scholar] [CrossRef] [Green Version]
- Sukop, M.C.; Thorne, D.T. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL Europhys. Lett. 1992, 17, 479. [Google Scholar] [CrossRef]
- Reis, T.; Phillips, T.N. Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A Math. Theor. 2007, 40, 4033. [Google Scholar] [CrossRef]
- Mora, P.; Morra, G.; Yuen, D.A. A concise python implementation of the lattice Boltzmann method on HPC for geo-fluid flow. Geophys. J. Int. 2020, 220, 682–702. [Google Scholar] [CrossRef]
- Pastewka, L.; Greiner, A. HPC with Python: An MPI-parallel implementation of the Lattice Boltzmann Method. In Proceedings of the 5th bwHPC Symposium, Freiburg, Germany, 24–25 September 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, R.; Wang, X.; Li, L.; Li, K.; An, R.; Xian, C. Lattice Boltzmann Modeling of Spontaneous Imbibition in Variable-Diameter Capillaries. Energies 2022, 15, 4254. https://doi.org/10.3390/en15124254
Gong R, Wang X, Li L, Li K, An R, Xian C. Lattice Boltzmann Modeling of Spontaneous Imbibition in Variable-Diameter Capillaries. Energies. 2022; 15(12):4254. https://doi.org/10.3390/en15124254
Chicago/Turabian StyleGong, Rundong, Xiukun Wang, Lei Li, Kaikai Li, Ran An, and Chenggang Xian. 2022. "Lattice Boltzmann Modeling of Spontaneous Imbibition in Variable-Diameter Capillaries" Energies 15, no. 12: 4254. https://doi.org/10.3390/en15124254
APA StyleGong, R., Wang, X., Li, L., Li, K., An, R., & Xian, C. (2022). Lattice Boltzmann Modeling of Spontaneous Imbibition in Variable-Diameter Capillaries. Energies, 15(12), 4254. https://doi.org/10.3390/en15124254