Dynamical System Scaling of a Thermocline Thermal Storage System in the Thermal Energy Distribution System (TEDS) Facility
Abstract
:1. Introduction
2. Materials and Methods
2.1. TEDS Overview
2.2. Dynamical System Scaling
3. Thermal Energy Distribution System–Thermocline Thermal Storage System Equation Scaling
3.1. Mass Flow Rate
3.2. Conservation of Mass
3.3. Conservation of Momentum
3.4. Conservation of Energy
3.5. System Discretization
3.6. Non-Dimensionlization
3.7. Law of Scaling Ratio
3.8. DSS Scaling Type Application
3.8.1. -Strain
3.8.2. -Strain
3.8.3. 2–2 Affine
3.8.4. Others
3.9. Nominal Value Selection
3.10. Scaling Ratio Determination
4. Results and Discussion
4.1. Thermocline Centerline Results
4.1.1. Charging Mode
4.1.2. Discharging Mode
4.2. Thermocline Inlet Results
4.2.1. Charging Mode
4.2.2. Discharging Mode
4.3. Thermocline Outlet Results
4.3.1. Charging Mode
4.3.2. Discharging Mode
4.4. Velocity Results
Discharging Mode
4.5. Overall
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMT | Core Makeup Tank |
DETAIL | Dynamic Energy Transport and Integration Laboratory |
DSS | Dynamical System Scaling |
INL | Idaho National Laboratory |
IES | Integrated Energy System |
NPP | Nuclear Power Plant |
TEDS | Thermal Energy Distribution System |
TTSS | Thermocline Thermal Storage System |
References
- Morton, T.J. Integrated Energy Systems Experimental Systems Development. United States Department of Energy. 2020. Available online: https://www.osti.gov/servlets/purl/1668842 (accessed on 10 March 2022).
- Al-Ghussain, L.; Abubaker, A.M.; Darwish Ahmad, A. Superposition of Renewable-Energy Supply from Multiple Sites Maximizes Demand-Matching: Towards 100% Renewable Grids in 2050. Appl. Energy 2021, 284, 116402. [Google Scholar] [CrossRef]
- Levin, T.; Botterud, A.; Mann, W.N.; Kwon, J.; Zhou, Z. Extreme Weather and Electricity Markets: Key Lessons from the February 2021 Texas Crisis. Joule 2022, 6, 1–7. [Google Scholar] [CrossRef]
- Eliana, R. Argentina Capital Hit by Major Power Outage Amid Heat Wave. News Article: Reuters. 11 January 2022. Available online: https://www.reuters.com/world/americas/argentina-capital-hit-by-major-power-outage-amid-heat-wave-2022-01-11/ (accessed on 31 May 2022).
- Asgary, A.; Mousavi-Jahromi, Y. Power Outage, Business Continuity and Businesses’ Choices of Power Outage Mitigation Measures. Am. J. Econ. Bus. Adm. 2011, 3, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Bragg-Sitton, S.M. Next Generation Nuclear Energy: Advanced Reactors and Integrated Energy Systems. United States. 2022. Available online: https://www.osti.gov/servlets/purl/1865609 (accessed on 31 May 2022).
- Marting, R.P.; Frepoli, C. Design-Basis Accident Analysis Methods for Light-Water Nuclear Power Plants, 1st ed.; World Scientific: Singapore, 2019; pp. 181–263. [Google Scholar] [CrossRef]
- Yoshiura, R.; Epiney, A.; Mohammad, A. Integration of Dynamical System Scaling to RAVEN and Facility Application. INL EXT-21-64507-Rev000, Idaho National Laboratory. 2021. Available online: https://www.osti.gov/biblio/1822257/ (accessed on 10 March 2022).
- Yoshiura, R.K. Dynamic System Scaling Application to Accelerated Nuclear Fuel Testing. In Proceedings of the 19th International Topical Meeting on Nuclear Thermal Hydraulics, Brussels, Belgium, 6–11 March 2022. [Google Scholar]
- Sabharwall, P.; O’Brien, J.E.; McKellar, M.G.; Housley, G.K.; Bragg-Sitton, S.M.; Boardman, R.D. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing; INL/EXT-15-34456; Idaho National Laboratory: Idaho Falls, ID, USA, 2015. [Google Scholar] [CrossRef]
- Frick, K.; Bragg-Sitton, S.; Rabiti, C. Modeling the Idaho National Laboratory Thermal-Energy Distribution System (TEDS) in the Modelica Ecosystem. Energies 2020, 13, 6353. [Google Scholar] [CrossRef]
- Stoots, C.; Duenas, D.M.; Sabharwall, P.; O’Brien, J.E.; Soo Yoo, J.; Bragg-Sitton, S. Thermal Energy Delivery System Design Basis Report; INL/EXT-18-51351-Rev000; Idaho National Laboratory: Idaho Falls, ID, USA, 2018. [Google Scholar] [CrossRef]
- Frick, K.; Bragg-Sitton, S.; Garrouste, M. Validation and Verification Methodology for INL Modelica-Based TEDS Models via Experimental Results; INL EXT-21-64408-Rev000; Idaho National Laboratory: Idaho Falls, ID, USA, 2021. [Google Scholar] [CrossRef]
- Reyes, J.N. The Dynamical System Scaling Methodology. In Proceedings of the 16th International Topical Meeting on Nuclear Thermal Hydraulics, Chicago, IL, USA, 30 August–4 September 2015. [Google Scholar]
- Reyes, J.N.; Frepoli, C.; Yurko, J.P. The Dynamical System Scaling Methodology: Comparing Dimensionless Governing Equations with the H2TS and FSA Methodologies. In Proceedings of the 16th International Topical Meeting on Nuclear Thermal Hydraulics, Chicago, IL, USA, 30 August–4 September 2015. [Google Scholar]
- Einstein, A.; Infeld, L. The Evolution of Physics from Early Concepts to Relativity and Quanta, 1st ed.; Simon and Schuster Publisher: New York, NY, USA, 1966. [Google Scholar] [CrossRef]
- Gunn, D.J. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Transf. 1978, 21, 467. [Google Scholar] [CrossRef]
- Esence, T.; Brunch, A.; Molina, S.; Stutz, B.; Fourmigue, J.F. A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Sol. Energy 2017, 153, 628–654. [Google Scholar] [CrossRef]
Basis for Process Space–Time Coordinate Scaling | ||||
---|---|---|---|---|
Metric Invariance | and | Covariance Principle | ||
Coordinate Transformations | ||||
2–2 Affine | Dilation | -Strain | -Strain | Identity |
Similarity Criteria | ||||
Parameters | Charge Line | TTSS Fluid | TTSS Wall | Discharge Line |
---|---|---|---|---|
Temperature (°C) | 166 | 196 | 194 | 187 |
Specific Heat (kJ/(kg·K)) | 2.072 | 2.180 | N/A | 2.147 |
Density (kg/m) | 909 | 888 | N/A | 895 |
k (W/(m·K)) | N/A | N/A | 15.7 | N/A |
Velocity (m/s) | 0.458 | N/A | N/A | 0.455 |
Parameters | Charge Line | TTSS Fluid | TTSS Wall | Discharge Line |
---|---|---|---|---|
Temperature (°C) | 354 | 418 | 399 | 414 |
Specific Heat (J/(kg·K)) | 2.781 | 3.037 | N/A | 2.959 |
Density (kg/m) | 763 | 708 | N/A | 725 |
k (W/(m·K)) | N/A | N/A | 18.9 | N/A |
Velocity (m/s) | 0.458 | N/A | N/A | 0.455 |
Parameters | ||
---|---|---|
1.000 | 1.993 | |
1.037 | 2.068 | |
1.027 | 2.046 | |
0.4692 | 0.9351 | |
0.5086 | 1.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshiura, R.; Duenas, A.; Epiney, A. Dynamical System Scaling of a Thermocline Thermal Storage System in the Thermal Energy Distribution System (TEDS) Facility. Energies 2022, 15, 4265. https://doi.org/10.3390/en15124265
Yoshiura R, Duenas A, Epiney A. Dynamical System Scaling of a Thermocline Thermal Storage System in the Thermal Energy Distribution System (TEDS) Facility. Energies. 2022; 15(12):4265. https://doi.org/10.3390/en15124265
Chicago/Turabian StyleYoshiura, Ramon, Alexander Duenas, and Aaron Epiney. 2022. "Dynamical System Scaling of a Thermocline Thermal Storage System in the Thermal Energy Distribution System (TEDS) Facility" Energies 15, no. 12: 4265. https://doi.org/10.3390/en15124265
APA StyleYoshiura, R., Duenas, A., & Epiney, A. (2022). Dynamical System Scaling of a Thermocline Thermal Storage System in the Thermal Energy Distribution System (TEDS) Facility. Energies, 15(12), 4265. https://doi.org/10.3390/en15124265