Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review
Abstract
:1. Introduction
2. Conversion of Low ILUC Risk Energy Crops to Biofuels
2.1. Herbaceous and Other Crops
2.1.1. Cardoon (Cynara cardunculus L.)
2.1.2. Giant Reed (Arundo donax L.)
2.1.3. Hemp (Cannabis sativa L.)
2.1.4. Jerusalem Artichoke (Helianthus tuberosus L.)
2.1.5. Linseed (Linum usitatissimum L.)
2.1.6. Miscanthus (Miscanthus × giganteus Greef et Deu)
2.1.7. Sorghum (Sorghum bicolor L. Moench)
2.1.8. Switchgrass (Panicum virgatum L.)
2.2. Forest Crops
2.2.1. Acacia (Acacia dealbata L.)
2.2.2. Maritime Pine (Pinus pinaster Aiton)
2.2.3. Paulownia [Paulownia tomentosa (Thunberg) Steudel]
2.2.4. Populus (Populus spp.)
2.2.5. Willow (Salix viminalis L.)
2.3. Microalgae
- Microalgae present an elevated growth rate in a short time when they are compared to the terrestrial energy crops and it is a culture that can be developed at any time of the year. Its productivity is by far higher when compared with other cultures, converting the sunlight and CO2 into power and doubling in times shorter than 6 h under optimal conditions. In fact, certain types of species can double their biomass in times as short as 3.5 h [402];
- The photosynthesis mechanism in these microorganisms is similar to higher species. However, they have an elevated photosynthetic efficiency (between 4% and 7.5%) far above the 0.5% for terrestrial cultures [398];
- Microalgae implementation needs a low water quantity including the land resort than the other types of cultures (terrestrial). It can be utilized in marine or freshwater, brackish and the non-arable land, decreasing the environmental impingement, without creating competition with food crops [400];
- This microorganism can get nutrients such as N and P from WW, making available, in parallel, a solution for the agro-industrial effluents [400];Microalgae is capable of fixing CO2 from the environment, however, it can also use the CO2 of energy plants and of industrial sources. The typical value of this microorganism is that it can fixate 1.83 kg CO2 kg−1 (dry algal biomass) [398];
- Microalgal biomass is utilized to produce many valued products like fuels (inclusive aviation gas, jet fuel, gasoline, biodiesel, and bioethanol, among others), feed, food, and other products like nutraceuticals and cosmetics. Waste biomass can be utilized as fertilizer and feed [398];
- The possibility of manipulating the biochemical characteristics of the biomass microalgal over a variety of developmental conditions [400].
3. Benefits and Constraints of Bioenergy Technologies Applied to Energy Crops Cultivated in Contaminated and Marginal Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briones, M.J.I.; Elias, D.M.O.; Grant, H.K.; McNamara, N.P. Plant identity control on soil food web structure and C transfers under perennial bioenergy plantations. Soil Biol. Biochem. 2019, 138, 107603. [Google Scholar] [CrossRef]
- Zheng, Y.; Qiu, F. Bioenergy in the Canadian Prairies: Assessment of accessible biomass from agricultural crop residues and identification of potential biorefinery sites. Biomass Bioenergy 2020, 140, 105669. [Google Scholar] [CrossRef]
- Traverso, L.; Colangeli, M.; Morese, M.; Pulighe, G.; Branca, G. Opportunities and constraints for implementation of cellulosic ethanol value chains in Europe. Biomass Bioenergy 2020, 141, 105692. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Brito, P.; Vilarinho, C. Biomass resources in Portugal: Current status and prospects. Renew. Sustain. Energy Rev. 2017, 78, 1221–1235. [Google Scholar] [CrossRef]
- Castillo, C.; Baranzelli, C.; Maes, J.; Zulian, G.; Barbosa, A.; Vandecasteele, I.; Mari-Rivero, I.; Vallecillo, S.; Batista e Silva, F.; Jacobs-Crisioni, C.; et al. An assessment of dedicated energy crops in Europe under the EU Energy Reference Scenario 2013. In Application of the LUISA Modelling Platform—Updated Configuration 2014; European Union: Brussels, Belgium, 2015. [Google Scholar]
- Maucieri, C.; Camarotto, C.; Florio, G.; Albergo, R.; Ambrico, A.; Trupo, M.; Borin, M. Bioethanol and biomethane potential production of thirteen pluri-annual herbaceous species. Ind. Crops Prod. 2019, 129, 694–701. [Google Scholar] [CrossRef]
- Pires, J.R.A.; Souza, V.G.L.; Fernando, A.L. Valorization of energy crops as a source for nanocellulose production—Current knowledge and future prospects. Ind. Crops Prod. 2019, 140, 111642. [Google Scholar] [CrossRef]
- Papazoglou, E.G.; Fernando, A.L. Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.) grown on heavy metal contaminated soil. Ind. Crops Prod. 2017, 107, 463–471. [Google Scholar] [CrossRef]
- Barbosa, B.; Fernando, A.L. Aided Phytostabilization of Mine Waste. In Bio-Geotechnologies for Mine Site Rehabilitation; Prasad, M., Fava, P., SK, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–157. [Google Scholar]
- Hanzhenko, O. Seemla: Sustainable Exploitation of Biomass for Bioenergy from Marginal Lands in Europe—Catalogue for Bioenergy Crops and Their Suitability in the Categories of MagLs; Institute of Bioenergy Crops and Sugar Beet National Academy of Agrarian Sciences of Ukraine (IBCSB NAASU): Kiev, Ukraine, 2016.
- Kulig, B.; Gacek, E.; Wojciechowski, R.; Oleksy, A.; Kołodziejczyk, M.; Szewczyk, W.; Klimek-Kopyra, A. Biomass yield and energy efficiency of willow depending on cultivar, harvesting frequency and planting density. Plant Soil Environ. 2019, 65, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Pulighe, G.; Bonati, G.; Colangeli, M.; Morese, M.M.; Traverso, L.; Lupia, F.; Khawaja, C.; Janssen, R.; Fava, F. Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renew. Sustain. Energy Rev. 2019, 103, 58–70. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Patanè, C.; Sanzone, E.; Copani, V.; Foti, S. Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind. Crops Prod. 2007, 25, 75–88. [Google Scholar] [CrossRef]
- Zatta, A.; Clifton-Brown, J.; Robson, P.; Hastings, A.; Monti, A. Land use change from C3 grassland to C4 Miscanthus: Effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy 2014, 6, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil Erosion Mitigation by Perennial Species Under Mediterranean Environment. BioEnergy Res. 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Fernando, A.L.; Rettenmaier, N.; Soldatos, P.; Panoutsou, C. Sustainability of Perennial Crops Production for Bioenergy and Bioproducts. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 245–283. [Google Scholar]
- Pin, M.; Vecchiet, A.; Picco, D. Diffusion of a Sustainable EU Model to Produce 1st Generation Ethanol from Sweet Sorghum in Decentralised Plants. In Proceedings of the 19th European Biomass Conference and Exhibition (EUBCE 2011), Berlin, Germany, 6–10 June 2011; ETA-Florence Renewable Energies: Florence, Italy, 2011. [Google Scholar]
- Fernando, A.L.; Oliveira, J.F. Caracterização do potencial da planta Miscanthus × giganteus em Portugal para fins energéticos e industriais. In Biologia Vegetal e Agro-Industrial; Robalo, M., Ed.; Edições Sílabo: Lisboa, Portugal, 2005; Volume 2, pp. 195–204. [Google Scholar]
- Long, X.H.; Shao, H.B.; Liu, L.; Liu, L.P.; Liu, Z.P. Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renew. Sustain. Energy Rev. 2016, 54, 1382–1388. [Google Scholar] [CrossRef]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowsk, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy 2020, 10, 928. [Google Scholar] [CrossRef]
- Bury, M.; Rusinowski, S.; Sitko, K.; Krzyżak, J.; Kitczak, T.; Możdżer, E.; Siwek, H.; Włodarczyk, M.; Zieleźnik-Rusinowska, P.; Szada-Borzyszkowska, A.; et al. Physiological status and biomass yield of Sida hermaphrodita (L.) Rusby cultivated on two distinct marginal lands in Southern and Northern Poland. Ind. Crops Prod. 2021, 167, 113502. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Krzemieniewski, M. Anaerobic Co-digestion of the Energy Crop Sida hermaphrodita and Microalgae Biomass for Enhanced Biogas Production. Int. J. Environ. Res. 2017, 11, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Papamatthaiakis, N.; Laine, A.; Haapala, A.; Ikonen, R.; Kuittinen, S.; Pappinen, A.; Kolström, M.; Mola-Yudego, B. New energy crop alternatives for Northern Europe: Yield, chemical and physical properties of Giant knotweed (Fallopia sachalinensis var. ‘Igniscum’) and Virginia mallow (Sida hermaphrodita). Fuel 2021, 304, 121349. [Google Scholar] [CrossRef]
- Kurucz, E.; Fári, M.G.; Antal, G.; Gabnai, Z.; Popp, J.; Bai, A. Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita). Renew. Sustain. Energy Rev. 2018, 90, 824–834. [Google Scholar] [CrossRef]
- Rooney, W.L.; Blumenthal, J.; Bean, B.; Mullet, J.E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Biorefin. 2007, 1, 147–157. [Google Scholar] [CrossRef]
- Lourenço, A.; Neiva, D.M.; Gominho, J.; Curt, M.D.; Fernández, J.; Marques, A.V.; Pereira, H. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenergy 2015, 76, 86–95. [Google Scholar] [CrossRef]
- Barracosa, P.; Barracosa, M.; Pires, E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem. Biodivers. 2019, 16, e1900498. [Google Scholar] [CrossRef] [PubMed]
- Oginni, O.; Singh, K. Pyrolysis characteristics of Arundo donax harvested from a reclaimed mine land. Ind. Crops Prod. 2019, 133, 44–53. [Google Scholar] [CrossRef]
- Ge, X.; Xu, F.; Vasco-Correa, J.; Li, Y. Giant reed: A competitive energy crop in comparison with miscanthus. Renew. Sustain. Energy Rev. 2016, 54, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Ji, A.; Jia, L.; Kumar, D.; Yoo, C.G. Recent Advancements in Biological Conversion of Industrial Hemp for Biofuel and Value-Added Products. Fermentation 2021, 7, 6. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.M.; Kim, C.H. Ethanol production using whole plant biomass of jerusalem artichoke by Kluyveromyces marxianus CBS1555. Appl. Biochem. Biotechnol. 2013, 169, 1531–1545. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.H. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) forconsolidated bioprocessing ethanol production. Renew. Energy 2014, 65, 83–91. [Google Scholar] [CrossRef]
- Cabral, M.R.; Nakanishi, E.Y.; Mármol, G.; Palacios, J.; Godbout, S.; Lagacé, R.; Savastano, H.; Fiorelli, J. Potential of Jerusalem Artichoke (Helianthus tuberosus L.) stalks to produce cement-bonded particleboards. Ind. Crops Prod. 2018, 122, 214–222. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumari, D. Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel 2019, 253, 60–71. [Google Scholar] [CrossRef]
- Appiah-Nkansah, N.B.; Li, J.; Rooney, W.; Wang, D. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew. Energy 2019, 143, 1121–1132. [Google Scholar] [CrossRef]
- Samson, R.; Mani, S.; Boddey, R.; Sokhansanj, S.; Quesada, D.; Urquiaga, S.; Reis, V.; Lem, C.H. The Potential of C 4 Perennial Grasses for Developing a Global BIOHEAT Industry. CRC. Crit. Rev. Plant Sci. 2005, 24, 461–495. [Google Scholar] [CrossRef]
- Bonfiglio, F.; Cagno, M.; Rey, F.; Torres, M.; Böthig, S.; Menéndez, P.; Mussatto, S.I. Pretreatment of switchgrass by steam explosion in a semi-continuous pre-pilot reactor. Biomass Bioenergy 2019, 121, 41–47. [Google Scholar] [CrossRef]
- Alcheikh, A. Advantages and Challenges of Hemp Biodiesel Production: A Comparison of Hemp vs. Other Crops Commonly Used for Biodiesel Production. Master’s Thesis, University of Gävle, Gävle, Sweden, 2015. [Google Scholar]
- Hashemzadeh Gargari, M.; Sadrameli, S.M. Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor. Energy 2018, 148, 888–895. [Google Scholar] [CrossRef]
- Sambusiti, C.; Ficara, E.; Malpei, F.; Steyer, J.P.; Carrère, H. Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chem. Eng. J. 2012, 211–212, 488–492. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Siliveru, K.; Veljković, V.B.; Banković-Ilić, I.B.; Tasić, M.B.; Ciampitti, I.A.; Đalović, I.G.; Mitrović, P.M.; Sikora, V.; Prasad, P.V.V. Production of biofuels from sorghum. Renew. Sustain. Energy Rev. 2020, 124, 109769. [Google Scholar] [CrossRef]
- Di Girolamo, G.; Grigatti, M.; Barbanti, L.; Angelidaki, I. Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresour. Technol. 2013, 147, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Sipos, B.; Kreuger, E.; Svensson, S.E.; Réczey, K.; Björnsson, L.; Zacchi, G. Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 2010, 34, 1721–1731. [Google Scholar] [CrossRef] [Green Version]
- Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ruggeri, R. Jerusalem Artichoke (Helianthus tuberosus L.): A versatile and sustainable crop for renewable energy production in Europe. Agronomy 2019, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Saratale, G.D.; Kshirsagar, S.D.; Saratale, R.G.; Govindwar, S.P.; Oh, M.-K. Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol. Bioprocess Eng. 2015, 20, 733–743. [Google Scholar] [CrossRef]
- Lakshman, V.; Brassard, P.; Hamelin, L.; Raghavan, V.; Godbout, S. Pyrolysis of Miscanthus: Developing the mass balance of a biorefinery through experimental tests in an auger reactor. Bioresour. Technol. Rep. 2021, 14, 100687. [Google Scholar] [CrossRef]
- Bi, Z.; Zhang, J.; Peterson, E.; Zhu, Z.; Xia, C.; Liang, Y.; Wiltowski, T. Biocrude from pretreated sorghum bagasse through catalytic hydrothermal liquefaction. Fuel 2017, 188, 112–120. [Google Scholar] [CrossRef]
- Serrano, D.; Horvat, A.; Sobrino, C.; Sánchez-Delgado, S. Thermochemical conversion of C. cardunculus L. in nitrate molten salts. Appl. Therm. Eng. 2019, 148, 136–146. [Google Scholar] [CrossRef]
- Wiklund, A. The genus Cynara L. (Asteraceae-Cardueae). Bot. J. Linn. Soc. 1992, 109, 75–123. [Google Scholar] [CrossRef]
- Fernández, J.; Hidalgo, M.; Del Monte, J.P.; Curt, M.D. Cynara cardunculus L. as a perennial crop for non-irrigated lands: Yields and applications. Acta Hortic. 2005, 681, 109–116. [Google Scholar] [CrossRef]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy J. 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Zayed, A.; Farag, M.A. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. LWT 2020, 132, 109883. [Google Scholar] [CrossRef]
- Barracosa, P.; Oliveira, J.; Barros, M.; Pires, E. Morphological evaluation of cardoon (Cynara cardunculus L.): Assessing biodiversity for applications based on tradition, innovation and sustainability. Genet. Resour. Crop Evol. 2018, 65, 17–28. [Google Scholar] [CrossRef]
- Gominho, J.; Fernandez, J.; Pereira, H. Cynara cardunculus L.—A new fibre crop for pulp and paper production. Ind. Crops Prod. 2001, 13, 1–10. [Google Scholar] [CrossRef]
- Neri, U.; Pennelli, B.; Simonetti, G.; Francaviglia, R. Biomass partition and productive aptitude of wild and cultivated cardoon genotypes (Cynara cardunculus L.) in a marginal land of Central Italy. Ind. Crops Prod. 2017, 95, 191–201. [Google Scholar] [CrossRef]
- Pappalardo, H.D.; Toscano, V.; Puglia, G.D.; Genovese, C.; Raccuia, S.A. Cynara cardunculus L. as a Multipurpose Crop for Plant Secondary Metabolites Production in Marginal Stressed Lands. Front. Plant Sci. 2020, 11, 240. [Google Scholar] [CrossRef]
- Sitepu, E.K.; Heimann, K.; Raston, C.L.; Zhang, W. Critical evaluation of process parameters for direct biodiesel production from diverse feedstock. Renew. Sustain. Energy Rev. 2020, 123, 109762. [Google Scholar] [CrossRef]
- Ferrero, F.; Dinuccio, E.; Rollé, L.; Tabacco, E.; Borreani, G. Suitability of cardoon (Cynara cardunculus L.) harvested at two stages of maturity to ensiling and methane production. Biomass Bioenergy 2020, 142, 105776. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Bitou, P.; Kanellis, T.; Manara, P.; Stavropoulos, G. Investigating Cynara C. biomass gasification producer gas suitability for CHP, second generation biofuels, and H2 production. Ind. Crops Prod. 2014, 61, 308–316. [Google Scholar] [CrossRef]
- Toscano, V.; Sollima, L.; Genovese, C.; Melilli, M.G.; Raccuia, S.A. Pilot plant system for biodiesel and pellet production from cardoon: Technical and economic feasibility. Acta Hortic. 2016, 1147, 429–442. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Galán, C.A.; Suárez, R.; Álvarez-Murillo, A.; González, J.F. Biofuels from cardoon pyrolysis: Extraction and application of biokerosene/kerosene mixtures in a self-manufactured jet engine. Energy Convers. Manag. 2018, 157, 246–256. [Google Scholar] [CrossRef]
- Barbanera, M.; Castellini, M.; Tasselli, G.; Turchetti, B.; Cotana, F.; Buzzini, P. Prediction of the environmental impacts of yeast biodiesel production from cardoon stalks at industrial scale. Fuel 2021, 283, 118967. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Sánchez, N.; Encinar, J.M. Valorization of Cynara cardunculus L. Oil as the basis of a biorefinery for biodiesel and biolubricant production. Energies 2020, 13, 5085. [Google Scholar] [CrossRef]
- Pesce, G.R.; Negri, M.; Bacenetti, J.; Mauromicale, G. The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind. Crops Prod. 2017, 103, 233–239. [Google Scholar] [CrossRef]
- Espada, J.J.; Villalobos, H.; Rodríguez, R. Environmental assessment of different technologies for bioethanol production from Cynara cardunculus: A Life Cycle Assessment study. Biomass Bioenergy 2021, 144, 105910. [Google Scholar] [CrossRef]
- Vergara, P.; Ladero, M.; García-Ochoa, F.; Villar, J.C. Valorization of Cynara cardunculus crops by ethanol-water treatment: Optimization of operating conditions. Ind. Crops Prod. 2018, 124, 856–862. [Google Scholar] [CrossRef]
- Mancini, M.; Lanza Volpe, M.; Gatti, B.; Malik, Y.; Moreno, A.C.; Leskovar, D.; Cravero, V. Characterization of cardoon accessions as feedstock for biodiesel production. Fuel 2019, 235, 1287–1293. [Google Scholar] [CrossRef]
- Fernandes, M.C.; Ferro, M.D.; Paulino, A.F.C.; Mendes, J.A.S.; Gravitis, J.; Evtuguin, D.V.; Xavier, A.M.R.B. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour. Technol. 2015, 186, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Cotana, F.; Cavalaglio, G.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Ingles, D.; Pompili, E. A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind. Crops Prod. 2015, 69, 424–432. [Google Scholar] [CrossRef]
- Mañas, P.; Castro, E.; de las Heras, J. Application of treated wastewater and digested sewage sludge to obtain biomass from Cynara cardunculus L. J. Clean. Prod. 2014, 67, 72–78. [Google Scholar] [CrossRef]
- Abreu, M.; Reis, A.; Moura, P.; Fernando, A.L.; Luís, A.; Quental, L.; Patinha, P.; Gírio, F. Evaluation of the potential of biomass to energy in Portugal-conclusions from the CONVERTE project. Energies 2020, 13, 937. [Google Scholar] [CrossRef] [Green Version]
- Duke, J.A. Handbook of Energy Crops. Available online: https://hort.purdue.edu/newcrop/duke_energy/Arundo_donax.html/hort.purdue.edu/newcrop/duke_energy/Arundo_donax.html (accessed on 17 January 2020).
- Duke, J.; Wain, K. Medicinal Plants of the World-Computer Index with More Than 85,000 Entries; Plant genetics and germplasm Institute, Agriculture Research Services: Beltsville, MD, USA, 2008; pp. 231–239. [Google Scholar]
- Raghu, S.; Anderson, R.C.; Daehler, C.C.; Davis, A.S.; Wiedenmann, R.N.; Simberloff, D.; Mack, R.N. Adding biofuels to the invasive species fire? Science 2006, 313, 1742. [Google Scholar] [CrossRef]
- Low, T.; Carol, B. The Weedy Truth About Biofuels; Invasive Species Council: Melbourne, Australia, 2007.
- Corno, L.; Pilu, R.; Adani, F. Arundo donax L.: A non-food crop for bioenergy and bio-compound production. Biotechnol. Adv. 2014, 32, 1535–1549. [Google Scholar] [CrossRef]
- Dahl, J.; Obernberger, I. Evaluation of the combustion characteristics of four perennial energy crops (Arundo donax, Cynara cardunculus, Miscanthus × giganteus and Panicum virgatum). In Proceedings of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10–14 May 2004; pp. 1265–1270. [Google Scholar]
- Ragaglini, G.; Dragoni, F.; Simone, M.; Bonari, E. Suitability of giant reed (Arundo donax L.) for anaerobic digestion: Effect of harvest time and frequency on the biomethane yield potential. Bioresour. Technol. 2014, 152, 107–115. [Google Scholar] [CrossRef]
- Dell’Omo, P.P.; Spena, V.A. Mechanical pretreatment of lignocellulosic biomass to improve biogas production: Comparison of results for giant reed and wheat straw. Energy 2020, 203, 117798. [Google Scholar] [CrossRef]
- Vasmara, C.; Cianchetta, S.; Marchetti, R.; Ceotto, E.; Galletti, S. Potassium Hydroxyde Pre-Treatment Enhances Methane Yield from Giant Reed (Arundo donax L.). Energies 2021, 14, 630. [Google Scholar] [CrossRef]
- De Bari, I.; Liuzzi, F.; Ambrico, A.; Trupo, M. Arundo donax refining to second generation bioethanol and furfural. Processes 2020, 8, 1591. [Google Scholar] [CrossRef]
- Lemons e Silva, C.F.; Schirmer, M.A.; Maeda, R.N.; Barcelos, C.A.; Pereira, N. Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron. J. Biotechnol. 2015, 18, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Jaradat, A.A. Genetic resources of energy crops: Biological systems to combat climate change. Aust. J. Crop Sci. 2010, 4, 309–323. [Google Scholar]
- Jámbor, A.; Török, Á. The Economics of Arundo donax—A Systematic Literature Review. Sustainability 2019, 11, 4225. [Google Scholar] [CrossRef] [Green Version]
- Muthuvelu, K.S.; Rajarathinam, R.; Kanagaraj, L.P.; Ranganathan, R.V.; Dhanasekaran, K.; Manickam, N.K. Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Manag. 2019, 87, 368–374. [Google Scholar] [CrossRef]
- Komolwanich, T.; Tatijarern, P.; Prasertwasu, S.; Khumsupan, D.; Chaisuwan, T.; Luengnaruemitchai, A.; Wongkasemjit, S. Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 2014, 21, 1327–1340. [Google Scholar] [CrossRef]
- Ba, Y.; Liu, F.; Wang, X.; Yang, J. Pyrolysis of C3 energy plant (arundo donax): Thermogravimetry, mechanism, and potential evaluation. Ind. Crops Prod. 2020, 149, 112337. [Google Scholar] [CrossRef]
- Fernando, A.L.; Barbosa, B.; Costa, J.; Papazoglou, E.G. Giant Reed (Arundo donax L.): A Multipurpose Crop Bridging Phytoremediation with Sustainable Bioeconomy. In Bioremediation and Bioeconomy; Prasad, M.N.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–95. [Google Scholar]
- Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Roozeboom, K.; Wang, D. Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel 2020, 281, 118725. [Google Scholar] [CrossRef]
- Johnson, R. Hemp as an Agricultural Commodity; Congressional Research Service (CRS)—USA Government: Washington, DC, USA, 2018.
- DGADR. Cânhamo. Available online: http://guiaexploracoes.dgadr.pt/index.php/producao-vegetal/outros-setores/canhamo (accessed on 17 January 2020).
- European Parliament Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001; European Union: Brussels, Belgium, 2013; pp. 671–854.
- Fike, J. Industrial Hemp: Renewed Opportunities for an Ancient Crop. CRC. Crit. Rev. Plant Sci. 2016, 35, 406–424. [Google Scholar] [CrossRef]
- Duque Schumacher, A.G.; Pequito, S.; Pazour, J. Industrial hemp fiber: A sustainable and economical alternative to cotton. J. Clean. Prod. 2020, 268, 122180. [Google Scholar] [CrossRef]
- Parvez, A.M.; Lewis, J.D.; Afzal, M.T. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renew. Sustain. Energy Rev. 2021, 141, 110784. [Google Scholar] [CrossRef]
- Ingrao, C.; Lo Giudice, A.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sustain. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- Kraszkiewicz, A.; Kachel, M.; Parafiniuk, S.; Zając, G.; Niedziółka, I.; Sprawka, M. Assessment of the Possibility of Using Hemp Biomass (Cannabis sativa L.) for Energy Purposes: A Case Study. Appl. Sci. 2019, 9, 4437. [Google Scholar] [CrossRef] [Green Version]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Pedrazzi, S.; Santunione, G.; Mustone, M.; Cannazza, G.; Citti, C.; Francia, E.; Allesina, G. Techno-economic study of a small scale gasifier applied to an indoor hemp farm: From energy savings to biochar effects on productivity. Energy Convers. Manag. 2021, 228, 113645. [Google Scholar] [CrossRef]
- Salami, A.; Raninen, K.; Heikkinen, J.; Tomppo, L.; Vilppo, T.; Selenius, M.; Raatikainen, O.; Lappalainen, R.; Vepsäläinen, J. Complementary chemical characterization of distillates obtained from industrial hemp hurds by thermal processing. Ind. Crops Prod. 2020, 155, 112760. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Jami, T.; Karade, S.R.; Singh, L.P. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Khan, B.A.; Chevali, V.S.; Na, H.; Zhu, J.; Warner, P.; Wang, H. Processing and properties of antibacterial silver nanoparticle-loaded hemp hurd/poly(lactic acid) biocomposites. Compos. Part B Eng. 2016, 100, 10–18. [Google Scholar] [CrossRef]
- Viswanathan, M.B.; Cheng, M.H.; Clemente, T.E.; Dweikat, I.; Singh, V. Economic perspective of ethanol and biodiesel coproduction from industrial hemp. J. Clean. Prod. 2021, 299, 126875. [Google Scholar] [CrossRef]
- Prade, T. Industrial Hemp (Cannabis sativa L.)—A High-Yielding Energy Crop; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2011. [Google Scholar]
- Li, S.Y.; Stuart, J.D.; Li, Y.; Parnas, R.S. The feasibility of converting Cannabis sativa L. oil into biodiesel. Bioresour. Technol. 2010, 101, 8457–8460. [Google Scholar] [CrossRef]
- Ahmad, M.; Ullah, K.; Khan, M.A.; Zafar, M.; Tariq, M.; Ali, S.; Sultana, S. Physicochemical analysis of hemp oil biodiesel: A promising non edible new source for bioenergy. Energy Sour. Part A Recover. Util. Environ. Eff. 2011, 33, 1365–1374. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Mattsson, J.E. Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 2012, 40, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Plöchl, M.; Heiermann, M.; Linke, B.; Schelle, H. Biogas Crops—Part II: Balance of Greenhouse Gas Emissions and Energy from Using Field Crops for Anaerobic Digestion. Agric. Eng. Int. CIGR J. 2009, XI, 1–11. [Google Scholar]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Laghari, M.; Mirjat, M.S.; Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- Pakarinen, A.; Maijala, P.; Stoddard, F.L.; Santanen, A.; Tuomainen, P.; Kymäläinen, M.; Viikari, L. Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production. Biomass Bioenergy 2011, 35, 3071–3078. [Google Scholar] [CrossRef]
- Kuglarz, M.; Gunnarsson, I.B.; Svensson, S.E.; Prade, T.; Johansson, E.; Angelidaki, I. Ethanol production from industrial hemp: Effect of combined dilute acid/steam pretreatment and economic aspects. Bioresour. Technol. 2014, 163, 236–243. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Galgano, A. Experimental analysis about the exploitation of industrial hemp (Cannabis sativa) in pyrolysis. Fuel Process. Technol. 2017, 162, 20–29. [Google Scholar] [CrossRef]
- Viswanathan, M.B.; Park, K.; Cheng, M.H.; Cahoon, E.B.; Dweikat, I.; Clemente, T.; Singh, V. Variability in structural carbohydrates, lipid composition, and cellulosic sugar production from industrial hemp varieties. Ind. Crops Prod. 2020, 157, 112906. [Google Scholar] [CrossRef]
- Matassa, S.; Esposito, G.; Pirozzi, F.; Papirio, S. Exploring the biomethane potential of different industrial hemp (Cannabis sativa L.) biomass residues. Energies 2020, 13, 3361. [Google Scholar] [CrossRef]
- Kreuger, E.; Prade, T.; Escobar, F.; Svensson, S.E.; Englund, J.E.; Björnsson, L. Anaerobic digestion of industrial hemp-Effect of harvest time on methane energy yield per hectare. Biomass Bioenergy 2011, 35, 893–900. [Google Scholar] [CrossRef]
- Kreuger, E.; Sipos, B.; Zacchi, G.; Svensson, S.E.; Björnsson, L. Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresour. Technol. 2011, 102, 3457–3465. [Google Scholar] [CrossRef] [PubMed]
- Nykter, M.; Kymäläinen, H.R.; Thomsen, A.B.; Lilholt, H.; Koponen, H.; Sjöberg, A.M.; Thygesen, A. Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass Bioenergy 2008, 32, 392–399. [Google Scholar] [CrossRef]
- Das, L.; Liu, E.; Saeed, A.; Williams, D.W.; Hu, H.; Li, C.; Ray, A.E.; Shi, J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour. Technol. 2017, 244, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresour. Technol. 2020, 309, 123383. [Google Scholar] [CrossRef]
- Rheay, H.T.; Omondi, E.C.; Brewer, C.E. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 2021, 13, 525–536. [Google Scholar] [CrossRef]
- Kays, S.J.; Nottingham, S.F. Biology and Chemistry of Jerusalem Artichoke. In Biology and Chemistry of Jerusalem Artichoke; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2007; Volume 44, p. 478. ISBN 9781420044959. [Google Scholar]
- Yang, L.; He, Q.S.; Corscadden, K.; Udenigwe, C.C. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 2015, 5, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin—A versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem. 2010, 1, 27–50. [Google Scholar]
- Qiu, Y.; Lei, P.; Zhang, Y.; Sha, Y.; Zhan, Y.; Xu, Z.; Li, S.; Xu, H.; Ouyang, P. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources. Biotechnol. Biofuels 2018, 11, 151. [Google Scholar] [CrossRef]
- Johansson, E.; Prade, T.; Angelidaki, I.; Svensson, S.E.; Newson, W.R.; Gunnarsson, I.B.; Hovmalm, H.P. Economically viable components from jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 2015, 16, 8997–9016. [Google Scholar] [CrossRef] [Green Version]
- Rakhimov, D.A.; Zhauynbaeva, K.S.; Mezhlumyan, L.G.; Salikhov, S.A. Carbohydrates and Proteins from Helianthus tuberosus. Chem. Nat. Compd. 2014, 50, 344–345. [Google Scholar] [CrossRef]
- Baldini, M.; Danuso, F.; Turi, M.; Vannozzi, G.P. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind. Crops Prod. 2004, 19, 25–40. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Wang, Y.; Du, Y.; Qin, S. Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol. Lett. 2013, 35, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, I.B.; Svensson, S.E.; Johansson, E.; Karakashev, D.; Angelidaki, I. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind. Crops Prod. 2014, 56, 231–240. [Google Scholar] [CrossRef]
- Bhagia, S.; Akinosho, H.; Ferreira, J.F.S.; Ragauskas, A.J. Biofuel production from Jerusalem artichoke tuber inulins: A review. Biofuel Res. J. 2017, 4, 587–599. [Google Scholar] [CrossRef]
- Matei, G.; Vlăduț, V.; Isticioaia, S.; Pânzaru, R.L.; Popa, D. Potential of Jerusalem Artichoke (Helianthus tuberosus L.) as a Biomass Crop. Agron. J. 2020, LXIII, 387–393. [Google Scholar]
- Ge, X.Y.; Zhang, W.G. A shortcut to the production of high ethanol concentration from jerusalem artichoke tubers. Food Technol. Biotechnol. 2005, 43, 241–246. [Google Scholar]
- Gao, J.; Yuan, W.; Kong, L.; Xiang, R.; Zhong, S. Efficient ethanol production from inulin by two-stage aerate strategy. Biomass Bioenergy 2015, 80, 10–16. [Google Scholar] [CrossRef]
- Paixão, S.M.; Alves, L.; Pacheco, R.; Silva, C.M. Evaluation of Jerusalem artichoke as a sustainable energy crop to bioethanol: Energy and CO2eq emissions modeling for an industrial scenario. Energy 2018, 150, 468–481. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wi, S.G.; Kim, H.M.; Bae, H.J. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresour. Technol. 2016, 214, 30–36. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Yang, Y.; Xie, G. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresour. Technol. 2016, 208, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wu, D.; Yang, H.; Ren, H. Production of ethanol from Jerusalem artichoke by mycelial pellets. Sci. Rep. 2019, 9, 18510. [Google Scholar] [CrossRef] [PubMed]
- Sarchami, T.; Rehmann, L. Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass Bioenergy 2014, 69, 175–182. [Google Scholar] [CrossRef]
- Li, Z. Site Suitability Analysis for Biomass Energy Plants Using GIS. Available online: https://sites.tufts.edu/gis/files/2014/11/Li_Zhaohuan.pdf (accessed on 22 April 2021).
- Celińska, E.; Grajek, W. Biotechnological production of 2,3-butanediol—Current state and prospects. Biotechnol. Adv. 2009, 27, 715–725. [Google Scholar] [CrossRef]
- Wünsch, K.; Gruber, S.; Claupein, W. Profitability analysis of cropping systems for biogas production on marginal sites in southwestern Germany. Renew. Energy 2012, 45, 213–220. [Google Scholar] [CrossRef]
- Lehtomäki, A.; Viinikainen, T.A.; Rintala, J.A. Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 2008, 32, 541–550. [Google Scholar] [CrossRef]
- Emmerling, D.C.; Barton, J. Anaerobic co-digestion of topinambour (Helianthus tuberosus L.) and properties of the remaining biogas manure. Arch. Agron. Soil Sci. 2007, 53, 683–690. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, W.; Gao, C.; Lan, K.; Gao, Y.; Wu, Q. Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J. Chem. Technol. Biotechnol. 2009, 84, 777–781. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, S.; Hu, C.; Wang, Q.; Hua, Y.; Zhao, Z.K. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J. Ind. Microbiol. Biotechnol. 2010, 37, 581–585. [Google Scholar] [CrossRef]
- Ciccoli, R.; Sperandei, M.; Petrazzuolo, F.; Broglia, M.; Chiarini, L.; Correnti, A.; Farneti, A.; Pignatelli, V.; Tabacchioni, S. Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community. Biomass Bioenergy 2018, 108, 190–197. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Z.; Zhu, T.; Coulter, J.A. The influence of flower removal on tuber yield and biomass characteristics of Helianthus tuberosus L. in a semi-arid area. Ind. Crops Prod. 2020, 150, 112374. [Google Scholar] [CrossRef]
- Song, Y.; Oh, C.; Bae, H.J. Simultaneous production of bioethanol and value-added D-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Bioresour. Technol. 2017, 244, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, M.A.; Ahmad, M.S.; Liu, Q.; Liu, C.G.; Tahir, M.H.; Aloqbi, A.A.; Tarbiah, N.I.; Alsufiani, H.M.; Gull, M. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study. Energy Convers. Manag. 2019, 194, 37–45. [Google Scholar] [CrossRef]
- Dixit, S.; Kanakraj, S.; Rehman, A. Linseed oil as a potential resource for bio-diesel: A review. Renew. Sustain. Energy Rev. 2012, 16, 4415–4421. [Google Scholar] [CrossRef]
- Popa, V.-M.; Gruia, A.; Raba, D.-I.; Dumbrava, D.; Moldovan, C.; Bordean, D.; Mateescu, C. Fatty acids composition and oil characteristics of linseed (Linum usitatissimum L.) from Romania. J. Agroaliment. Process. Technol. 2012, 18, 136–140. [Google Scholar]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S.; et al. Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9, 496. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xie, Y.; Dang, Z.; Wang, L.; Li, W.; Zhao, W.; Zhao, L.; Dang, Z. Oil content and fatty acid components of oilseed flax under different environments in China. Agron. J. 2016, 108, 365–372. [Google Scholar] [CrossRef]
- Lafond, G.P.; Irvine, B.; Johnston, A.M.; May, W.E.; McAndrew, D.W.; Shirtliffe, S.J.; Stevenson, F.C. Impact of agronomic factors on seed yield formation and quality in flax. Can. J. Plant Sci. 2008, 88, 485–500. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Johnson, E.N.; Gan, Y.; May, W.E.; McAndrew, D.W.; Barthet, V.; McDonald, T.; Wispinski, D. Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can. J. Plant Sci. 2011, 91, 889–896. [Google Scholar] [CrossRef]
- Athar, M.; Zaidi, S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J. Environ. Chem. Eng. 2020, 8, 104523. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.K.S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M.M. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 2019, 74, 239–303. [Google Scholar] [CrossRef]
- Moser, B.R. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending. Renew. Energy 2016, 85, 819–825. [Google Scholar] [CrossRef]
- Warkhade, G.S.; Babu, A.V. Combustion characteristics of linseed (Linum usitatissimum) methyl ester fuelled biodiesel blends in variable compression ratio diesel engine. Aust. J. Mech. Eng. 2019, 17, 38–51. [Google Scholar] [CrossRef]
- Bacenetti, J.; Restuccia, A.; Schillaci, G.; Failla, S. Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renew. Energy 2017, 112, 444–456. [Google Scholar] [CrossRef]
- Taherkhani, M.; Sadrameli, S.M. An improvement and optimization study of biodiesel production from linseed via in-situ transesterification using a co-solvent. Renew. Energy 2018, 119, 787–794. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M.; Kale, P.; Geremew, B.; Adeloju, S.B.; Nizami, M.; Ayoub, M. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renew. Energy 2019, 139, 1272–1280. [Google Scholar] [CrossRef]
- Griga, M.; Bjelková, M. Flax (Linum usitatissimum L.) and Hemp (Cannabis sativa L.) as Fibre Crops for Phytoextraction of Heavy Metals: Biological, Agro-technological and Economical Point of View. In Plant-Based Remediation Processes; Gupta, D.K., Ed.; Springer: Berlin, Heidelberg, 2013; Volume 35, pp. 199–237. [Google Scholar]
- Saleem, M.H.; Fahad, S.; Khan, S.U.; Din, M.; Ullah, A.; Sabagh, A.E.L.; Hossain, A.; Llanes, A.; Liu, L. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ. Sci. Pollut. Res. 2019, 27, 5211–5221. [Google Scholar] [CrossRef]
- Amna; Masood, S.; Syed, J.H.; Munis, M.F.H.; Chaudhary, H.J. Phyto-Extraction of Nickel by Linum usitatissimum in Association with Glomus intraradices. Int. J. Phytoremed. 2015, 17, 981–987. [Google Scholar]
- Fernando, A.L.; Godovikova, V.; Oliveira, J.F.S. Miscanthus × giganteus: Contribution to a Sustainable Agriculture of a Future/Present—Oriented Biomaterial. Mater. Sci. Forum Adv. Mater. Forum II 2004, 455–456, 437–441. [Google Scholar] [CrossRef]
- Oliveira, J.S.; Duarte, M.P.; Christian, D.G.; Eppel-Hotz, A.; Fernando, A.L. Environmental aspects of Miscanthus production. In Miscanthus: For Energy and Fibre; Jones, M.B., Walsh, M., Eds.; James & James (Science Publishers): London, UK, 2001; pp. 172–178. ISBN 9781849710978. [Google Scholar]
- Lewandowski, I.; Clifton-Brown, J.; Kiesel, A.; Hastings, A.; Iqbal, Y. Miscanthus. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 35–59. ISBN 9780128129012. [Google Scholar]
- Clifton-Brown, J.; Hastings, A.; Mos, M.; McCalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.; Chiang, Y.-C.; Cosentino, S.; Cracroft-Eley, W.; et al. Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy 2017, 9, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Danielewicz, D.; Surma-Ślusarska, B. Miscanthus × giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Ind. Crops Prod. 2019, 141, 111744. [Google Scholar] [CrossRef]
- Girones, J.; Vo, L.; Arnoult, S.; Brancourt-Hulmel, M.; Navard, P. Miscanthus stem fragment—Reinforced polypropylene composites: Development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polym. Test. 2016, 55, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Okeke, I.J.; Sahoo, K.; Kaliyan, N.; Mani, S. Life cycle assessment of renewable diesel production via anaerobic digestion and Fischer-Tropsch synthesis from miscanthus grown in strip-mined soils. J. Clean. Prod. 2020, 249, 119358. [Google Scholar] [CrossRef]
- Scordia, D.; van den Berg, D.; van Sleen, P.; Alexopoulou, E.; Cosentino, S.L. Are herbaceous perennial grasses suitable feedstock for thermochemical conversion pathways? Ind. Crops Prod. 2016, 91, 350–357. [Google Scholar] [CrossRef]
- Schmidt, T.; Fernando, A.L.; Monti, A.; Rettenmaier, N. Life Cycle Assessment of Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the Mediterranean Region. BioEnergy Res. 2015, 8, 1548–1561. [Google Scholar] [CrossRef]
- Couto, N.D.; Silva, V.B.; Monteiro, E.; Rouboa, A.; Brito, P. An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier. Renew. Energy 2017, 109, 248–261. [Google Scholar] [CrossRef]
- Barbosa, B.; Costa, J.; Fernando, A.L. Production of Energy Crops in Heavy Metals Contaminated Land: Opportunities and Risks. In Land Allocation for Biomass Crops; Li, R., Monti, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 83–102. ISBN 978-3-319-74536-7. [Google Scholar]
- Wilk, M.; Magdziarz, A. Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy 2017, 140, 1292–1304. [Google Scholar] [CrossRef]
- Kiesel, A.; Wagner, M.; Lewandowski, I. Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production? Sustainalility 2016, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Dubis, B.; Bułkowska, K.; Lewandowska, M.; Szempliński, W.; Jankowski, K.J.; Idźkowski, J.; Kordala, N.; Szymańska, K. Effect of different nitrogen fertilizer treatments on the conversion of Miscanthus × giganteus to ethanol. Bioresour. Technol. 2017, 243, 731–737. [Google Scholar] [CrossRef]
- Torrado, I.; Carvalheiro, F.; Duarte, L.C.; Raposo, S.; Gírio, F.M. Optimization of dilute acid hydrolysis for the selective recovery of hemicellulosic sugars from sorghum straw. In Proceedings of the 1-CIAB—1st Iberoamerican Congress on Biorefineries, Los Cabos, Mexico, 24–26 October 2012; pp. 557–563. [Google Scholar]
- Sene, L.; Arruda, P.V.; Oliveira, S.M.M.; Felipe, M.G.A. Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Braz. J. Microbiol. 2011, 42, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Ledezma-Orozco, E.; Ruíz-Salazar, R.; Bustos-Vázquez, G.; Montes-García, N.; Roa-Cordero, V.; Rodríguez-Castillejos, G. Production of Xylitol from non-detoxified acid hydrolizates from Sorghum straw by Debaryomyces hansenii. Agrociencia 2018, 52, 1095–1106. [Google Scholar]
- James, A.M.; Yuan, W.; Boyette, M.D.; Wang, D. The Effect of Air Flow Rate and Biomass Type on the Performance of an Updraft Biomass Gasifier. BioResources 2015, 10, 3615–3624. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R.L. Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char. Energies 2013, 6, 3972–3986. [Google Scholar] [CrossRef]
- Batog, J.; Frankowski, J.; Wawro, A.; Łacka, A. Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop. Energies 2020, 13, 6291. [Google Scholar] [CrossRef]
- Diallo, B.; Li, M.; Tang, C.; Ameen, A.; Zhang, W.; Xie, G.H. Biomass yield, chemical composition and theoretical ethanol yield for different genotypes of energy sorghum cultivated on marginal land in China. Ind. Crops Prod. 2019, 137, 221–230. [Google Scholar] [CrossRef]
- Serra, P.; Giuntoli, J.; Agostini, A.; Colauzzi, M.; Amaducci, S. Coupling sorghum biomass and wheat straw to minimise the environmental impact of bioenergy production. J. Clean. Prod. 2017, 154, 242–254. [Google Scholar] [CrossRef]
- Al Chami, Z.; Amer, N.; Smets, K.; Yperman, J.; Carleer, R.; Dumontet, S.; Vangronsveld, J. Evaluation of flash and slow pyrolysis applied on heavy metal contaminated Sorghum bicolor shoots resulting from phytoremediation. Biomass Bioenergy 2014, 63, 268–279. [Google Scholar] [CrossRef]
- Kumar, V.; Kant, P. Study of Physical and Chemical Properties of Biodiesel from Sorghum Oil. Res. J. Chem. Sci. 2013, 3, 64–68. [Google Scholar]
- Kumar, V.; Kant, P.; Nigam, G.D. Factor Affecting the Preparation of Biodiesel from Sorghum Oil. Pet. Coal 2013, 55, 6–11. [Google Scholar]
- Kumar, V.; Kant, P. Differential Studies of Alkali Catalysed Production of Biodiesel from Sorghum Oil. Res. J. Chem. Sci. 2014, 4, 66–70. [Google Scholar]
- Kumar, V.; Kant, P. Biodiesel Production from Sorghum Oil by Transesterification Using Zinc Oxide as Catalyst. Pet. Coal 2014, 56, 35–40. [Google Scholar]
- Wyatt, V.T.; Jones, K.; Johnston, D.B.; Moreau, R.A. Production of Fatty-Acid Methyl Esters Via the In Situ Transesterification of Grain Sorghum Bran and Sorghum Distiller’s Dried Grains and Solubles. J. Am. Oil Chem. Soc. 2018, 95, 743–752. [Google Scholar] [CrossRef]
- Nazli, R.I. Evaluation of different sweet sorghum cultivars for bioethanol yield potential and bagasse combustion characteristics in a semiarid Mediterranean environment. Biomass Bioenergy 2020, 139, 105624. [Google Scholar] [CrossRef]
- Mathur, S.; Umakanth, A.V.; Tonapi, V.A.; Sharma, R.; Sharma, M.K. Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnol. Biofuels 2017, 10, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windpassinger, S.; Friedt, W.; Frauen, M.; Snowdon, R.; Wittkop, B. Designing adapted sorghum silage types with an enhanced energy density for biogas generation in temperate Europe. Biomass Bioenergy 2015, 81, 496–504. [Google Scholar] [CrossRef]
- Gamawati Adinurani, P.; Rahayu, S.; Sulistiyo Budi, L.; Nindita, A.; Soni, P.; Mel, M. Biomass and Sugar Content of Some Varieties of Sorghum (Sorghum bicolor L. Moench) on Dry Land Forest as Feedstock Bioethanol. In Proceedings of the 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017), Bali, Indonesia, 26–29 September 2017; EDP Sciences: Les Ulis, France, 2018; Volume 164, p. 01035. [Google Scholar]
- Hu, Y.; Ma, H.; Shi, C.; Kobayashi, T.; Xu, K.Q. Nutrient augmentation enhances biogas production from sorghum mono-digestion. Waste Manag. 2021, 119, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Głąb, L.; Sowiński, J.; Chmielewska, J.; Prask, H.; Fugol, M.; Szlachta, J. Comparison of the energy efficiency of methane and ethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) with a variety of feedstock management technologies. Biomass Bioenergy 2019, 129, 105332. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Gavala, H.N.; Skiadas, I.V.; Angelopoulos, K.; Lyberatos, G. Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol. 2008, 99, 110–119. [Google Scholar] [CrossRef]
- Sjöblom, M.; Matsakas, L.; Christakopoulos, P.; Rova, U. Production of butyric acid by Clostridium tyrobutyricum (ATCC25755) using sweet sorghum stalks and beet molasses. Ind. Crops Prod. 2015, 74, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Dweikat, I.; Weil, C.W.; Moose, S.; Kochian, L.; Mosier, N.; Ileleji, K.; Brown, P.; Peer, W.; Murphy, A.; Taheripour, F.; et al. Envisioning the transition to a next-generation biofuels industry in the US Midwest. Biofuels, Bioprod. Biorefin. 2012, 6, 376–386. [Google Scholar] [CrossRef]
- Reddy, B.V.; Ramesh, S.; Reddy, P.S.; Ramaiah, B.; Salimath, M.; Kachapur, R. Sweet Sorghum—A Potential Alternate Raw Material for Bio-ethanol and Bio-energy. Int. Crop. Res. Inst. Semi-Arid Trop. 2005, 46, 79–86. [Google Scholar]
- Soldatos, P.; Lychnaras, V.; Panoutsou, C.; Cosentino, S.L. Economic viability of energy crops in the EU: The farmer’s point of view. Biofuels, Bioprod. Biorefin. 2010, 4, 637–657. [Google Scholar] [CrossRef]
- Marx, S.; Ndaba, B.; Chiyanzu, I.; Schabort, C. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass Bioenergy 2014, 65, 145–150. [Google Scholar] [CrossRef]
- Barcelos, C.A.; Maeda, R.N.; Santa Anna, L.M.M.; Pereira, N. Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass Bioenergy 2016, 94, 46–56. [Google Scholar] [CrossRef]
- Maw, M.J.W.; Houx, J.H.; Fritschi, F.B. Maize, sweet sorghum, and high biomass sorghum ethanol yield comparison on marginal soils in Midwest USA. Biomass Bioenergy 2017, 107, 164–171. [Google Scholar] [CrossRef]
- Szambelan, K.; Nowak, J.; Frankowski, J.; Szwengiel, A.; Jeleń, H.; Burczyk, H. The comprehensive analysis of sorghum cultivated in Poland for energy purposes: Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the. Bioresour. Technol. 2018, 250, 750–757. [Google Scholar] [CrossRef]
- Boboescu, I.Z.; Damay, J.; Chang, J.K.W.; Beigbeder, J.B.; Duret, X.; Beauchemin, S.; Lalonde, O.; Lavoie, J.M. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass. Bioresour. Technol. 2019, 292, 121975. [Google Scholar] [CrossRef]
- Matsakas, L.; Rova, U.; Christakopoulos, P. Evaluation of dried sweet sorghum stalks as raw material for methane production. Biomed Res. Int. 2014, 2014, 731731. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, G.; Li, W.; Li, C.; Xu, G. Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int. J. Hydrogen Energy 2016, 41, 9153–9158. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Lyberatos, G. Effect of Pretreatment of Sweet Sorghum Biomass on Methane Generation. Waste Biomass Valorization 2012, 4, 583–591. [Google Scholar] [CrossRef]
- Laopaiboon, L.; Nuanpeng, S.; Srinophakun, P.; Klanrit, P.; Laopaiboon, P. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 2009, 100, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Nieves, I.U.; Rondón, V.; Sagues, W.J.; Fernández-Sandoval, M.T.; Yomano, L.P.; York, S.W.; Erickson, J.; Vermerris, W. Potential for ethanol production from different sorghum cultivars. Ind. Crops Prod. 2017, 109, 367–373. [Google Scholar] [CrossRef]
- Li, B.Z.; Balan, V.; Yuan, Y.J.; Dale, B.E. Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour. Technol. 2010, 101, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Molaverdi, M.; Karimi, K.; Khanahmadi, M.; Goshadrou, A. Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind. Crops Prod. 2013, 49, 580–585. [Google Scholar] [CrossRef]
- Akanksha, K.; Sukumaran, R.K.; Pandey, A.; Rao, S.S.; Binod, P. Material balance studies for the conversion of sorghum stover to bioethanol. Biomass Bioenergy 2016, 85, 48–52. [Google Scholar] [CrossRef]
- Barcelos, C.A.; Maeda, R.N.; Betancur, G.J.V.; Pereira, N., Jr. Ethanol production from sorghum grains [Sorghum bicolor (L.) Moench]: Evaluation of the enzymatic hydrolysis and the hydrolysate fermentability. Braz. J. Chem. Eng. 2011, 28, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Guigou, M.; Lareo, C.; Pérez, L.V.; Lluberas, M.E.; Vázquez, D.; Ferrari, M.D. Bioethanol production from sweet sorghum: Evaluation of post-harvest treatments on sugar extraction and fermentation. Biomass Bioenergy 2011, 35, 3058–3062. [Google Scholar] [CrossRef]
- Su, M.Y.; Tzeng, W.S.; Shyu, Y.T. An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste. Bioresour. Technol. 2010, 101, 6669–6675. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. Influence of pH on fermentative hydrogen production from sweet sorghum extract. Int. J. Hydrogen Energy 2010, 35, 1921–1928. [Google Scholar] [CrossRef]
- Saraphirom, P.; Reungsang, A. Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). Int. J. Hydrogen Energy 2011, 36, 8765–8773. [Google Scholar] [CrossRef]
- Shi, X.-X.; Song, H.-C.; Wang, C.-R.; Tang, R.-S.; Huang, Z.-X.; Gao, T.-R.; Xie, J. Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures. Int. J. Energy Res. 2010, 34, 662–672. [Google Scholar] [CrossRef]
- Nagaiah, D.; Chiranjeevi, T.; Srinivas Rao, P.; Uma, A.; Prakasham, R.S. Fermentation of Pretreated High-Biomass Sorghum Hydrolysates to Biohydrogen by Mixed Consortia. Sugar Tech 2015, 18, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Rorke, D.; Gueguim Kana, E.B. Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: Optimization of saccharification, hydrogen production and preliminary scale up. Int. J. Hydrogen Energy 2016, 41, 12941–12952. [Google Scholar] [CrossRef]
- Chen, D.E.S.; Liu, L. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J. Therm. Anal. Calorim. 2017, 131, 1899–1909. [Google Scholar] [CrossRef]
- Carvalho, W.S.; Júnior, J.A.; de Oliveira, T.J.P.; Ataíde, C.H. Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis. Energy 2017, 131, 186–197. [Google Scholar] [CrossRef]
- Yin, R.; Liu, R.; Mei, Y.; Fei, W.; Sun, X. Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 2013, 112, 96–104. [Google Scholar] [CrossRef]
- Carvalho, W.S.; Cunha, I.F.; Pereira, M.S.; Ataíde, C.H. Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: Effect of addition of inorganic salts. Ind. Crops Prod. 2015, 74, 372–380. [Google Scholar] [CrossRef]
- Yue, Y.; Singh, H.; Singh, B.; Mani, S. Torrefaction of sorghum biomass to improve fuel properties. Bioresour. Technol. 2017, 232, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.L.; Zong, Z.M.; Li, Z.K.; Kong, J.; Zheng, Q.X.; Li, Y.; Wei, X.Y. Sweet sorghum stalk liquefaction in supercritical methanol: Effects of operating conditions on product yields and molecular composition of soluble fraction. Fuel Process. Technol. 2017, 155, 42–50. [Google Scholar] [CrossRef]
- Cordella, M.; Berrueco, C.; Santarelli, F.; Paterson, N.; Kandiyoti, R.; Millan, M. Yields and ageing of the liquids obtained by slow pyrolysis of sorghum, switchgrass and corn stalks. J. Anal. Appl. Pyrolysis 2013, 104, 316–324. [Google Scholar] [CrossRef]
- Kotaiah Naik, D.; Monika, K.; Prabhakar, S.; Parthasarathy, R.; Satyavathi, B. Pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products. J. Therm. Anal. Calorim. 2017, 127, 1277–1289. [Google Scholar] [CrossRef]
- Filipovici, A.; Tucu, D.; Bialowiec, A.; Bukowski, P.; Crisan, G.C.; Lica, S.; Pulka, J.; Dyjakon, A.; Debowski, M. Effect of temperature and heating rate on the char yield in sorghum and straw slow pyrolysis. Rev. Chim. 2017, 68, 576–580. [Google Scholar] [CrossRef]
- Santos, B.S.; Capareda, S.C. Energy sorghum pyrolysis using a pressurized batch reactor. Biomass Convers. Biorefinery 2015, 6, 325–334. [Google Scholar] [CrossRef]
- Li, B.; Duan, M.M.; Zeng, X.B.; Zhang, Q.; Xu, C.; Zhu, H.H.; Zhu, Q.H.; Huang, D.Y. Effects of composited organic mobilizing agents and their application periods on cadmium absorption of Sorghum bicolor L. in a Cd-contaminated soil. Chemosphere 2021, 263, 128136. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.Z.; Sun, R.; Du, Z.Y.; Yang, W.B.; Sun, Z.; Yuan, T.Q. A sustainable agricultural strategy integrating Cd-contaminated soils remediation and bioethanol production using sorghum cultivars. Ind. Crops Prod. 2021, 162, 113299. [Google Scholar] [CrossRef]
- Başar, A.; Kökdemir Ünşar, E.; Ünyay, H.; Perendeci, N.A. Ethanol, methane, or both? Enzyme dose impact on ethanol and methane production from untreated energy crop switchgrass varieties. Renew. Energy 2020, 149, 287–297. [Google Scholar] [CrossRef]
- Cheng, F.; Bayat, H.; Jena, U.; Brewer, C.E. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 2020, 147, 104780. [Google Scholar] [CrossRef]
- Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K.; Matson, P.A. Net energy of cellulosic ethanol from switchgrass. PNAS 2008, 105, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Dale, B.E. Cumulative Energy and Global Warming Impact from the Production of Biomass for Biobased Products. J. Ind. Ecol. 2004, 7, 147–162. [Google Scholar] [CrossRef]
- Bai, Y.; Luo, L.; Van Der Voet, E. Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int. J. Life Cycle Assess. 2010, 15, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Monti, A.; Barbanti, L.; Zatta, A.; Zegada-Lizarazu, W. The contribution of switchgrass in reducing GHG emissions. GCB Bioenergy 2012, 4, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Bustamante-Silveira, M.; Siri-Prieto, G.; Carrasco-Letelier, L. Water footprints of bioethanol cropping systems in Uruguay. Agric. Water Manag. 2021, 252, 106870. [Google Scholar] [CrossRef]
- Keshwani, D.R.; Cheng, J.J. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 2009, 100, 1515–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexopoulou, E.; Monti, A.; Elbersen, H.W.; Zegada-Lizarazu, W.; Millioni, D.; Scordia, D.; Zanetti, F.; Papazoglou, E.G.; Christou, M. 3—Switchgrass: From Production to End Use. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Elsevier Inc.: London, UK, 2018; pp. 61–105. ISBN 9780128129005. [Google Scholar]
- Balch, M.L.; Chamberlain, M.B.; Worthen, R.S.; Holwerda, E.K.; Lynd, L.R. Fermentation with continuous ball milling: Effectiveness at enhancing solubilization for several cellulosic feedstocks and comparative tolerance of several microorganisms. Biomass Bioenergy 2020, 134, 105468. [Google Scholar] [CrossRef]
- Larnaudie, V.; Ferrari, M.D.; Lareo, C. Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: Effect of solids loading and enzyme dosage on enzymatic hydrolysis. Biomass Bioenergy 2019, 130, 105394. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A. Chemical Composition of Bio-oils Produced by Fast Pyrolysis of Two Energy Crops. Energy Fuels 2008, 22, 2104–2109. [Google Scholar] [CrossRef]
- Pilon, G.; Lavoie, J.-M. Pyrolysis of Switchgrass (Panicum virgatum L.) at Low Temperatures within N 2 and CO 2 Environments: Product Yield Study. ACS Sustain. Chem. Eng. 2013, 1, 198–204. [Google Scholar] [CrossRef]
- Sun, X.; Atiyeh, H.K.; Adesanya, Y.; Okonkwo, C.; Zhang, H.; Huhnke, R.L.; Ezeji, T. Feasibility of using biochar as buffer and mineral nutrients replacement for acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysate. Bioresour. Technol. 2020, 298, 122569. [Google Scholar] [CrossRef]
- Vega, D.J.; Dopazo, R.; Ortiz, L. Manual de Cultivos Energéticos; Vigo University: Vigo, Spain, 2010. [Google Scholar]
- Nunes, L.J.R.; Raposo, M.A.M.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Control of invasive forest species through the creation of a value chain: Acacia dealbata biomass recovery. Environments 2020, 7, 39. [Google Scholar] [CrossRef]
- Stickler, C.M.; Nepstad, D.C.; Coe, M.T.; Mcgrath, D.G.; Rodrigues, H.O.; Walker, W.S.; Soares-Filho, B.S.; Davidson, E.A. The potential ecological costs and cobenefits of REDD: A critical review and case study from the Amazon region. Glob. Chang. Biol. 2009, 15, 2803–2824. [Google Scholar] [CrossRef]
- Davis, J.M. Genetic Improvement of Poplar (Populus spp.) as a Bioenergy Crop. In Genetic Improvement of Bioenergy Crops; Vermerris, W., Ed.; Springer: New York, NY, USA, 2008; pp. 377–396. [Google Scholar]
- Sannigrahi, P.; Ragauskas, A.; Tuskan, G. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioprod. Biorefin. 2010, 4, 209–226. [Google Scholar] [CrossRef]
- Stanton, B.; Eaton, J.; Johnson, J.; Rice, D.; Schuette, B.; Moser, B. Hybrid Poplar in the Pacific Northwest: The Effects of Market-Driven Management. J. For. 2002, 100, 28–33. [Google Scholar]
- De Rigo, D.; Enescu, C.M.; Durrant, T.H.; Caudullo, G. Populus nigra. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 136–137. [Google Scholar]
- Ferrarini, A.; Fornasier, F.; Serra, P.; Ferrari, F.; Trevisan, M.; Amaducci, S. Impacts of willow and miscanthus bioenergy buffers on biogeochemical N removal processes along the soil–groundwater continuum. GCB Bioenergy 2017, 9, 246–261. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Ecosystem Consequences of Biological Invasions. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef] [Green Version]
- CABI. Invasive Species Compendium—Datasheet Report for Acacia dealbata (acacia bernier). Available online: https://www.cabi.org/ISC/datasheetreport/2207 (accessed on 18 December 2018).
- Álvarez-Álvarez, P.; Pizarro, C.; Barrio-Anta, M.; Cámara-Obregón, A.; María Bueno, J.L.; Álvarez, A.; Gutiérrez, I.; Burslem, D.F.R.P. Evaluation of tree species for biomass energy production in Northwest Spain. Forests 2018, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Pontes, R.; Romaní, A.; Michelin, M.; Domingues, L.; Teixeira, J.; Nunes, J. Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds. Renew. Energy 2018, 128, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.S.D.; Moreira, P.; Resende, J.; Cruz, M.T.; Pereira, C.M.F.; Silva, A.M.S.; Santos, S.A.O.; Silvestre, A.J.D. Characterization and Cytotoxicity Assessment of the Lipophilic Fractions of Different Morphological Parts of Acacia dealbata. Int. J. Mol. Sci. 2020, 21, 1814. [Google Scholar] [CrossRef] [Green Version]
- López-Hortas, L.; Rodríguez-González, I.; Díaz-Reinoso, B.; Torres, M.D.; Moure, A.; Domínguez, H. Tools for a multiproduct biorefinery of Acacia dealbata biomass. Ind. Crops Prod. 2021, 169, 113655. [Google Scholar] [CrossRef]
- Mendes, C.V.T.; Moreira, R.; Portugal, A.; Carvalho, M.G.V.S. Biorefining of Pinus pinaster Stump Wood for Ethanol Production and Lignin Recovery. Chem. Eng. Technol. 2021, 44, 1043–1050. [Google Scholar] [CrossRef]
- López, M.; Vila, C.; Santos, V.; Parajó, J.C. Manufacture of Platform Chemicals from Pine Wood Polysaccharides in Media Containing Acidic Ionic Liquids. Polym. 2020, 12, 1215. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Potential of Paulownia sp. for biorefinery. Ind. Crops Prod. 2020, 155, 112739. [Google Scholar] [CrossRef]
- D’Auria, M.; Mecca, M.; Todaro, L. High temperature treatment allows the detection of episesamin in paulownia wood extractives. Nat. Prod. Res. 2020, 34, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Radeva, G.; Valchev, I.; Petrin, S.; Valcheva, E.; Tsekova, P. Kinetic study of the enzyme conversion of steam exploded Paulownia tomentosa to glucose. BioResources 2021, 7, 412–421. [Google Scholar]
- El-Showk, N.; El-Showk, S. The Paulownia Tree an Alternative for Sustainable Forestry. The Farm—Crop Development.org. 2003. Available online: https://cropdevelopment.org/docs/PaulowniaBooklet_print.pdf (accessed on 20 September 2021).
- Domínguez, E.; Romaní, A.; Domingues, L.; Garrote, G. Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Appl. Energy 2017, 187, 777–789. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.I.; Fillat, Ú.; Martín-Sampedro, R.; Ballesteros, I.; Manzanares, P.; Ballesteros, M.; Eugenio, M.E.; Ibarra, D. Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum. BioResources 2015, 10, 5215–5232. [Google Scholar] [CrossRef] [Green Version]
- Szczukowski, S.; Tworkowski, J.; Klasa, A.; Stolarski, M. Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Plant, Soil Environ. 2002, 48, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Alexandropoulou, M.; Antonopoulou, G.; Fragkou, E.; Ntaikou, I.; Lyberatos, G. Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J. Environ. Manag. 2017, 203, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Hashaikeh, R.; Fang, Z.; Butler, I.S.; Hawari, J.; Kozinski, J.A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 2007, 86, 1614–1622. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Dupree, P.; Scott, S.A.; Dennis, J.S. The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresour. Technol. 2010, 101, 9612–9623. [Google Scholar] [CrossRef]
- Łukajtis, R.; Rybarczyk, P.; Kucharska, K.; Konopacka-Łyskawa, D.; Słupek, E.; Wychodnik, K.; Kamiński, M. Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis. Energies 2018, 11, 886. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Devin, I.; Menana, Z.; Chrusciel, L.; Chalot, M.; Bert, V.; Brosse, N. Steam explosion pretreatment of willow grown on phytomanaged soils for bioethanol production. Ind. Crops Prod. 2019, 140, 111722. [Google Scholar] [CrossRef]
- Eklund, R.; Galbe, M.; Zacchi, G. The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresour. Technol. 1995, 52, 225–229. [Google Scholar] [CrossRef]
- Yi, W.; Nadeem, F.; Xu, G.; Zhang, Q.; Joshee, N.; Tahir, N. Modifying crystallinity, and thermo-optical characteristics of Paulownia biomass through ultrafine grinding and evaluation of biohydrogen production potential. J. Clean. Prod. 2020, 269, 122386. [Google Scholar] [CrossRef]
- Viana, H.F.; Rodrigues, A.M.; Godina, R.; Matias, J.C.D.O.; Nunes, L.J.R. Evaluation of the physical, chemical and thermal properties of Portuguese maritime pine biomass. Sustainability 2018, 10, 2877. [Google Scholar] [CrossRef] [Green Version]
- Amutio, M.; Lopez, G.; Alvarez, J.; Moreira, R.; Duarte, G.; Nunes, J.; Olazar, M.; Bilbao, J. Flash pyrolysis of forestry residues from the Portuguese Central Inland Region within the framework of the BioREFINA-Ter project. Bioresour. Technol. 2013, 129, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Yorgun, S.; Yildiz, D. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. J. Anal. Appl. Pyrolysis 2015, 114, 68–78. [Google Scholar] [CrossRef]
- Fassinou, W.F.; Van de Steene, L.; Toure, S.; Volle, G.; Girard, P. Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar. Fuel Process. Technol. 2009, 90, 75–90. [Google Scholar] [CrossRef]
- Selvi Gökkaya, D.; Çokkuvvetli, T.; Sağlam, M.; Yüksel, M.; Ballice, L. Hydrothermal gasification of poplar wood chips with alkali, mineral, and metal impregnated activated carbon catalysts. J. Supercrit. Fluids 2019, 152, 104542. [Google Scholar] [CrossRef]
- De Neergaard, A.; Saarnak, C.; Hill, T.; Khanyile, M.; Berzosa, A.M.; Birch-Thomsen, T. Australian wattle species in the Drakensberg region of South Africa—An invasive alien or a natural resource? Agric. Syst. 2005, 85, 216–233. [Google Scholar] [CrossRef]
- Tejada, M.; Gómez, I.; Fernández-Boy, E.; Díaz, M.-J. Effects of Sewage Sludge and Acacia dealbata Composts on Soil Biochemical and Chemical Properties. Commun. Soil Sci. Plant Anal. 2014, 45, 570–580. [Google Scholar] [CrossRef]
- Yañez, R.; Alonso, J.L.; Díaz, M.J. Influence of bulking agent on sewage sludge composting process. Bioresour. Technol. 2009, 100, 5827–5833. [Google Scholar] [CrossRef]
- Pinto, P.C.R.; Oliveira, C.; Costa, C.A.; Gaspar, A.; Faria, T.; Ataíde, J.; Rodrigues, A.E. Kraft delignification of energy crops in view of pulp production and lignin valorization. Ind. Crops Prod. 2015, 71, 153–162. [Google Scholar] [CrossRef]
- Yáñez, R.; Romaní, A.; Garrote, G.; Alonso, J.L.; Parajó, J.C. Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed Acacia dealbata. J. Chem. Technol. Biotechnol. 2009, 84, 1070–1077. [Google Scholar] [CrossRef]
- Yáñez, R.; Gómez, B.; Martínez, M.; Gullón, B.; Alonso, J.L. Valorization of an invasive woody species, Acacia dealbata, by means of Ionic liquid pretreatment and enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 2014, 89, 1337–1343. [Google Scholar] [CrossRef]
- Reid, D.G.; Bonnet, S.L.; Kemp, G.; Van Der Westhuizen, J.H. Analysis of commercial proanthocyanidins. Part 4: Solid state 13C NMR as a tool for in situ analysis of proanthocyanidin tannins, in heartwood and bark of quebracho and acacia, and related species. Phytochemistry 2013, 94, 243–248. [Google Scholar] [CrossRef]
- Okoli, B.J.; Shilowa, P.M.; Anyanwu, G.O.; Modise, J.S. Removal of Pb2+ from Water by Synthesized Tannin Resins from Invasive South African Trees. Water 2018, 10, 648. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, S.; Gürgen, A.; Can, Z.; Tabbouche, S.A.; Kiliç, A.O. Some bioactive properties of Acacia dealbata extracts and their potential utilization in wood protection. Drew. Prace Nauk. Doniesienia Komun. 2018, 61, 81–97. [Google Scholar]
- Neiva, D.M.; Luís, Â.; Gominho, J.; Domingues, F.; Duarte, A.P.; Pereira, H. Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Sci. Technol. 2020, 54, 559–585. [Google Scholar] [CrossRef]
- Casas, M.P.; Conde, E.; Ribeiro, D.; Fernandes, E.; Domínguez, H.; Torres, M.D. Bioactive properties of Acacia dealbata flowers extracts. Waste Biomass Valorization 2019, 11, 2549–2557. [Google Scholar] [CrossRef]
- López-Hortas, L.; Falqué, E.; Domínguez, H.; Torres, M.D. Microwave hydrodiffusion and gravity versus conventional distillation for Acacia dealbata flowers. Recovery of bioactive extracts for cosmetic purposes. J. Clean. Prod. 2020, 274, 123143. [Google Scholar] [CrossRef]
- Lorenzo, P.; Reboredo-Durán, J.; Muñoz, L.; Freitas, H.; González, L. Herbicidal properties of the commercial formulation of methyl cinnamate, a natural compound in the invasive silver wattle (Acacia dealbata). Weed Sci. 2020, 68, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Meenakshisundaram, S.; Fayeulle, A.; Leonard, E.; Ceballos, C.; Pauss, A. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass—A review. Bioresour. Technol. 2021, 331, 125053. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, E.; Romaní, A.; Alonso, J.L.; Parajó, J.C.; Yáñez, R. A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species. Bioresour. Technol. 2014, 173, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.; Moreira, R.; Gominho, J.; Fabião, A. Could control of invasive acacias be a source of biomass for energy under mediterranean conditions? Chem. Eng. Trans. 2014, 37, 187–192. [Google Scholar]
- Correia, R.; Quintela, J.C.; Duarte, M.P.; Gonçalves, M. Insights for the Valorization of Biomass from Portuguese Invasive Acacia spp. in a Biorefinery Perspective. Forests 2020, 11, 1342. [Google Scholar] [CrossRef]
- Muñoz, C.; Mendonça, R.; Baeza, J.; Berlin, A.; Saddler, J.; Freer, J. Bioethanol production from bio-organosolv pulps of Pinus radiata and Acacia dealbata. J. Chem. Technol. Biotechnol. 2007, 82, 767–774. [Google Scholar] [CrossRef]
- Ferreira, S.; Gil, N.; Queiroz, J.A.; Duarte, A.P.; Domingues, F.C. An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour. Technol. 2011, 102, 4766–4773. [Google Scholar] [CrossRef]
- Valero Gutiérrez del Olmo, E.; Picos Martín, J. Parcelas invadidas por Acacia dealbata Link. Evaluación de su potencial aprovechamiento incluyendo bioenergía. In Proceedings of the 5° Congresso Forestal Español—Montes y Sociedad: Saber qué Hacer, Centro Municipal de Congresos y Exposiciones de Ávila, Ávila, Spain, 21–25 September 2009; pp. 1–12. [Google Scholar]
- Nunes, L.J.R.; Raposo, M.A.M.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Carbon Sequestration Potential of Forest Invasive Species: A Case Study with Acacia dealbata Link. Resources 2021, 10, 51. [Google Scholar] [CrossRef]
- Forján, R.; Asensio, V.; Rodríguez-Vila, A.; Covelo, E.F. Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. CATENA 2016, 137, 120–125. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Rodrigues, A.M.; Loureiro, L.M.E.F.; Sá, L.C.R.; Matias, J.C.O. Energy recovery from invasive species: Creation of value chains to promote control and eradication. Recycling 2021, 6, 21. [Google Scholar] [CrossRef]
- Ferreira, T.; Tavares Marques, E.M.; Almeida, D.; Pereira, C.; Paiva, J.; Pinho, C. Monitoring fluidization quality and combustion efficiency of invasive species pellets. In Proceedings of the 15 th Brazilian Congress of Thermal Sciences and Engineering, Belém, Brazil, 10–13 November 2014; pp. 10–13. [Google Scholar]
- Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Carvalho, R.; Tarelho, L.A.C.; Paniagua, S.; Nunes, T.; Otero, M.; Calvo, L.F.; Alves, C. Emissions from residential pellet combustion of an invasive acacia species. Renew. Energy 2019, 140, 319–329. [Google Scholar] [CrossRef]
- Correia, A.; Oliveira, Â. Principais Espécies Florestais com Interesse Para Portugal—Zonas de Influência Atlântica, N.o 322; Direção-Geral das Florestas e Ministério da Agricultura—Desenvolvimento Rural e Pescas: Lisboa, Portugal, 2003.
- Direção-Geral de Agricultura e Desenvolvimento Rural—DGADR Direcção-Geral dos Recursos Florestais—DGRF. Plano Regional de Ordenamento Florestal—Baixo Alentejo; DGADR and DGRF: Lisboa, Portugal, 2006.
- Oliveira, Â.; Moura, P.; Providência, F.M. Boas Práticas Florestais Para o Pinheiro Bravo—Manual; Centro Pinus: Porto, Portugal, 1999. [Google Scholar]
- Serralves Pinus pinaster Aiton. Available online: http://serralves.ubiprism.pt/species/show/883 (accessed on 20 December 2018).
- Santos, A.; Carvalho, A.; Barbosa-Póvoa, A. An economic and environmental comparison between forest wood products—Uncoated woodfree paper, natural cork stoppers and particle boards. J. Clean. Prod. 2021, 296, 126469. [Google Scholar] [CrossRef]
- Viñas, R.A.; Caudullo, G.; Oliveira, S.; De Rigo, D. Pinus pinaster. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 128–129. [Google Scholar]
- Jiang, W.; Adamopoulos, S.; Hosseinpourpia, R.; Žigon, J.; Petrič, M.; Šernek, M.; Medved, S. Utilization of partially liquefied bark for production of particleboards. Appl. Sci. 2020, 10, 5253. [Google Scholar] [CrossRef]
- da Costa, T.P.; Quinteiro, P.; Arroja, L.; Dias, A.C. Environmental comparison of forest biomass residues application in Portugal: Electricity, heat and biofuel. Renew. Sustain. Energy Rev. 2020, 134, 110302. [Google Scholar] [CrossRef]
- Quinteiro, P.; Tarelho, L.; Marques, P.; Martín-Gamboa, M.; Freire, F.; Arroja, L.; Dias, A.C. Life cycle assessment of wood pellets and wood split logs for residential heating. Sci. Total Environ. 2019, 689, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gamboa, M.; Dias, L.C.; Quinteiro, P.; Freire, F.; Arroja, L.; Dias, A.C. Multi-criteria and life cycle assessment of wood-based bioenergy alternatives for residential heating: A sustainability analysis. Energies 2019, 12, 4391. [Google Scholar] [CrossRef] [Green Version]
- Rivas, S.; Raspolli-Galletti, A.M.; Antonetti, C.; Santos, V.; Parajó, J.C. Sustainable conversion of Pinus pinaster wood into biofuel precursors: A biorefinery approach. Fuel 2016, 164, 51–58. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J. Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Azevedo, J.C.; Pinto, M.V.; Escalante, E.; Feliciano, M.; Aranha, J.; Castro, J.P. Potential forest biomass and energy production at the regional scale: The case of maritime pine (Pinus pinaster Ait.) in the district of Bragança, Northeastern Portugal. In Proceedings of the Recent Researches in Environment, Energy Systems and Sustainability—8th WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development (EEESD’12), Faro, Portugal, 2–4 May 2012; Volume 1, pp. 226–231. [Google Scholar]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. Evaluation of the utilization of woodchips as fuel for industrial boilers. J. Clean. Prod. 2019, 223, 270–277. [Google Scholar] [CrossRef]
- Lapuerta, M.; Hernández, J.J.; Pazo, A.; López, J. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Process. Technol. 2008, 89, 828–837. [Google Scholar] [CrossRef]
- Zhao-Hua, Z.; Ching-Ju, C.; Xin-Yu, L.; Yao Gao, X. Paulownia in China: Cultivation and Utilization; Chinese Academy of Forestry Staff, Ed.; Asian Network for Biological Sciences and International Development Research Centre: Singapore, 1986; ISBN 9971845466. [Google Scholar]
- López, F.; Pérez, A.; Zamudio, M.A.M.; De Alva, H.E.; García, J.C. Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy 2012, 45, 77–86. [Google Scholar] [CrossRef]
- Zamudio, M.A.M.; Alfaro, A.; de Alva, H.E.; García, J.C.; García-Morales, M.; López, F. Biorefinery of paulownia by autohydrolysis and soda-anthraquinone delignification process. Characterization and application of lignin. J. Chem. Technol. Biotechnol. 2015, 90, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Cho, S.B.; Moon, H.I. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phyther. Res. 2010, 24, 1898–1900. [Google Scholar] [CrossRef]
- Jung, S.; Moon, H.I.; Ohk, J.; Lee, S.; Li, C.; Kim, S.K.; Lee, M.S. Inhibitory effect and mechanism on antiproliferation of isoatriplicolide tiglate (PCAC) from paulownia coreana. Molecules 2012, 17, 5945–5951. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Vaidya, B.; Perry, Z.; Parajuli, P.; Joshee, N. Paulownia as a Medicinal Tree: Traditional Uses and Current Advances. Eur. J. Med. Plants 2016, 14, 1. [Google Scholar] [CrossRef]
- Hori, M.; Aoki, Y.; Shinoda, K.; Chiba, M.; Sasaki, R. Wood volatiles as attractants of the confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae). Sci. Rep. 2019, 9, 11544. [Google Scholar] [CrossRef] [Green Version]
- Yorgun, S.; Vural, N.; Demiral, H. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater. 2009, 122, 189–194. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, C.; Hidayat, W.; Jang, J.H.; Kim, N.H. Solid bioenergy properties of Paulownia tomentosa grown in Korea. J. Korean Wood Sci. Technol. 2016, 44, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Bujanovic, B.M. Impact of hot-water extraction on acetone-water oxygen delignification of Paulownia Spp. and lignin recovery. Energies 2014, 7, 857–873. [Google Scholar] [CrossRef]
- Chang, J.; Gao, Z.; Wang, X.; Wu, D.; Xu, F.; Wang, X.; Guo, Y.; Jiang, K. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta 2015, 157, 290–298. [Google Scholar] [CrossRef]
- Allwright, M.R.; Payne, A.; Emiliani, G.; Milner, S.; Viger, M.; Rouse, F.; Keurentjes, J.J.B.; Bérard, A.; Wildhagen, H.; Faivre-Rampant, P.; et al. Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnol. Biofuels 2016, 9, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudullo, G.; De Rigo, D. Populus alba. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 134–135. [Google Scholar]
- Griu, T.; Lunguleasa, A. The use of the white poplar (Populus alba L.) biomass as fuel. J. For. Res. 2016, 27, 719–725. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium—Datasheet Report for Populus Alba (Silver-Leaf Poplar). Available online: https://www.cabi.org/isc/datasheetreport/43426 (accessed on 2 September 2020).
- Sim, S.J.; Yong, S.H.; Park, D.J.; Choi, E.; Seol, Y.; Song, H.J.; Jeong, M.J.; Kim, H.G.; Choi, M.S. Influence of inorganic salts on biomass production, biochemical composition, and bioethanol production of Populus alba. IForest 2020, 13, 566–574. [Google Scholar] [CrossRef]
- González-García, S.; Dias, A.C.; Clermidy, S.; Benoist, A.; Bellon Maurel, V.; Gasol, C.M.; Gabarrell, X.; Arroja, L. Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe. J. Clean. Prod. 2014, 76, 42–54. [Google Scholar] [CrossRef]
- Oliveira, N.; Pérez-Cruzado, C.; Cañellas, I.; Rodríguez-Soalleiro, R.; Sixto, H. Poplar short rotation coppice plantations under mediterranean conditions: The case of Spain. Forests 2020, 11, 1352. [Google Scholar] [CrossRef]
- Porth, I.; El-Kassaby, Y.A. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol. J. 2015, 10, 510–524. [Google Scholar] [CrossRef]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 2003, 25, 571–580. [Google Scholar] [CrossRef]
- Elder, T.; Groom, L.H. Pilot-scale gasification of woody biomass. Biomass Bioenergy 2011, 35, 3522–3528. [Google Scholar] [CrossRef]
- Martinez, M.; Duret, X.; Minh, D.P.; Nzihou, A.; Lavoie, J.-M. Conversion of lignocellulosic biomass in biobutanol by a novel thermal process. Int. J. Energy Prod. Manag. 2019, 4, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, C.; Lu, M.; Tu, M. Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. Biotechnol. Biofuels 2018, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Bryant, N.D.; Pu, Y.; Tschaplinski, T.J.; Tuskan, G.A.; Muchero, W.; Kalluri, U.C.; Yoo, C.G.; Ragauskas, A.J. Transgenic Poplar Designed for Biofuels. Trends Plant Sci. 2020, 25, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life cycle assessment of poplar production: Environmental impact of different soil enrichment methods. J. Clean. Prod. 2019, 206, 785–796. [Google Scholar] [CrossRef]
- Wang, H.; Larson, R.A.; Runge, T. Impacts to hydrogen sulfide concentrations in biogas when poplar wood chips, steam treated wood chips, and biochar are added to manure-based anaerobic digestion systems. Bioresour. Technol. Rep. 2019, 7, 100232. [Google Scholar] [CrossRef]
- Negro, M.J.; Manzanares, P.; Ballesteros, I.; Oliva, J.M.; Cabañas, A.; Ballesteros, M. Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. Appl. Biochem. Biotechnol. 2003, 105, 87–100. [Google Scholar] [CrossRef]
- El Bassam, N. Handbook of Bioenergy Crops: A Complete Reference to Species, Development and Applications, 1st ed.; Earthcan Ltd.: London, UK, 2010; ISBN 9781138975712. [Google Scholar]
- Rosso, L.; Facciotto, G.; Bergante, S.; Vietto, L.; Nervo, G. Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: Preliminary results. Appl. Energy 2013, 102, 87–92. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2016, 119, 224–232. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Cen, K.; Luo, M.; Li, H.; Lu, B. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Bioresour. Technol. 2016, 218, 780–788. [Google Scholar] [CrossRef]
- Soares Dias, A.P.; Rego, F.; Fonseca, F.; Casquilho, M.; Rosa, F.; Rodrigues, A. Catalyzed pyrolysis of SRC poplar biomass. Alkaline carbonates and zeolites catalysts. Energy 2019, 183, 1114–1122. [Google Scholar] [CrossRef]
- Echresh Zadeh, Z.; Abdulkhani, A.; Saha, B. A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods. Energy 2021, 214, 118930. [Google Scholar] [CrossRef]
- Werner, C.; Haas, E.; Grote, R.; Gauder, M.; Graeff-Hönninger, S.; Claupein, W.; Butterbach-Bahl, K. Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy 2012, 4, 642–653. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Bieniek, A.; Mleczek, M. Willow biomass obtained from different soils as a feedstock for energy. Ind. Crops Prod. 2015, 75, 114–121. [Google Scholar] [CrossRef]
- Klasnja, B.; Kopitovic, S.; Orlovic, S. Wood and bark of some poplar and willow clones as fuelwood. Biomass Bioenergy 2002, 23, 427–432. [Google Scholar] [CrossRef]
- Bartha, S.; Vajda, B.; Duarte, L.C.; Carvalheiro, F.; Antal, N. Environmental and Economical Assessment Analysis of the Energy Willow; Les Presses Agronomiques: Gembloux, Belgium, 2017; pp. 9–22. [Google Scholar]
- Fijałkowska, D.; Styszko, L. Calorific value of willow biomass. Rocz. Ochr. Sr. 2011, 13, 875–890. [Google Scholar]
- Palmqvist, E.; Hahn-Hägerdal, B.; Galbe, M.; Zacchi, G. The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym. Microb. Technol. 1996, 19, 470–476. [Google Scholar] [CrossRef]
- Budsberg, E.; Rastogi, M.; Puettmann, M.E.; Caputo, J.; Balogh, S.; Volk, T.A.; Gustafson, R.; Johnson, L. Life-Cycle Assessment for the Production of Bioethanol from Willow Biomass Crops via Biochemical Conversion. For. Prod. J. Online 2012, 62, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Sassner, P.; Zacchi, G. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process. Biotechnol. Biofuels 2008, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Von Sivers, M.; Zacchi, G.; Olsson, L.; Hahn-Hügerdal, B. Cost Analysis of Ethanol Production from Willow Using Recombinant Escherichia coli. Biotechnol. Prog. 1994, 10, 555–560. [Google Scholar] [CrossRef]
- Asad, M.; Menana, Z.; Ziegler-Devin, I.; Bert, V.; Chalot, M.; Herzig, R.; Mench, M.; Brosse, N. Pretreatment of trace element-enriched biomasses grown on phytomanaged soils for bioethanol production. Ind. Crops Prod. 2017, 107, 63–72. [Google Scholar] [CrossRef]
- Kakuk, B.; Bagi, Z.; Rákhely, G.; Maróti, G.; Dudits, D.; Kovács, K.L. Methane production from green and woody biomass using short rotation willow genotypes for bioenergy generation. Bioresour. Technol. 2021, 333, 125223. [Google Scholar] [CrossRef]
- Han, S.H.; Cho, D.H.; Kim, Y.H.; Shin, S.J. Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation. Energy 2013, 61, 13–17. [Google Scholar] [CrossRef]
- Vervaeke, P.; Tack, F.M.G.; Navez, F.; Martin, J.; Verloo, M.G.; Lust, N. Fate of heavy metals during fixed bed downdraft gasification of willow wood harvested from contaminated sites. Biomass Bioenergy 2006, 30, 58–65. [Google Scholar] [CrossRef]
- Lievens, C.; Carleer, R.; Cornelissen, T.; Yperman, J. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 2009, 88, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- Mayer, Z.A.; Apfelbacher, A.; Hornung, A. A comparative study on the pyrolysis of metal- and ash-enriched wood and the combustion properties of the gained char. J. Anal. Appl. Pyrolysis 2012, 96, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.; Ludwig, C.; Davoli, F.; Wochele, J. Thermal Treatment of Metal-Enriched Biomass Produced from Heavy Metal Phytoextraction. Environ. Sci. Technol. 2005, 39, 3359–3367. [Google Scholar] [CrossRef]
- Delplanque, M.; Collet, S.; Del Gratta, F.; Schnuriger, B.; Gaucher, R.; Robinson, B.; Bert, V. Combustion of Salix used for phytoextraction: The fate of metals and viability of the processes. Biomass Bioenergy 2013, 49, 160–170. [Google Scholar] [CrossRef]
- Bartha, S.; Moniz, P.; Carvalheiro, F.; Duarte, L. Hydrothermal Treatment of Energy Willow Biomass. In Proceedings of the 3rd Conference on “Smart Energy Systems in Cities and Regions”, Dublin, Ireland, 9–12 April 2018. [Google Scholar]
- Wang, K.; Jiang, J.; Liang, X. Design, synthesis and evaluation of novel glycosyl surfactant—Lignocellulosic hydrolysate esters from shrub willow. Ind. Crops Prod. 2016, 92, 127–135. [Google Scholar] [CrossRef]
- Kammerer, B.; Kahlich, R.; Biegert, C.; Gleiter, C.H.; Heide, L. HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem. Anal. 2005, 16, 470–478. [Google Scholar] [CrossRef]
- Kenstavičienė, P.; Nenortienė, P.; Kiliuvienė, G.; Ževžikovas, A.; Lukošius, A.; Kazlauskienė, D. Application of high-performance liquid chromatography for research of salicin in bark of different varieties of Salix. Medicina 2009, 45, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Zhang, G.; Liu, W.; Wang, D.; Dong, Y. Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater. Lett. 2016, 176, 60–63. [Google Scholar] [CrossRef]
- Cheshire, E.; Granzow, S.G.; Makkonen, H.P. Kraft Pulp from Plantation Grown Biomass Willow. In Proceedings of the 3rd Biennial Conference, Short Rotation Woody Crops—Operations Working Group, Syracuse, NY, USA, 10–13 October 2000. [Google Scholar]
- Eklund, R.; Zacchi, G. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzym. Microb. Technol. 1995, 17, 255–259. [Google Scholar] [CrossRef]
- Sassner, P.; Galbe, M.; Zacchi, G. Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzym. Microb. Technol. 2006, 39, 756–762. [Google Scholar] [CrossRef]
- Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corns Stover; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2002.
- Yoon, S.Y.; Kim, B.R.; Han, S.H.; Shin, S.J. Different response between woody core and bark of goat willow (Salix caprea L.) to concentrated phosphoric acid pretreatment followed by enzymatic saccharification. Energy 2015, 81, 21–26. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Smit, A.T.; Reith, J.H.; Uil, H. Den Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. J. Chem. Technol. Biotechnol. 2011, 86, 1428–1438. [Google Scholar] [CrossRef] [Green Version]
- Šyc, M.; Pohořelý, M.; Kameníková, P.; Habart, J.; Svoboda, K.; Punčochář, M. Willow trees from heavy metals phytoextraction as energy crops. Biomass Bioenergy 2012, 37, 106–113. [Google Scholar] [CrossRef]
- Sas, E.; Hennequin, L.M.; Frémont, A.; Jerbi, A.; Legault, N.; Lamontagne, J.; Fagoaga, N.; Sarrazin, M.; Hallett, J.P.; Fennell, P.S.; et al. Biorefinery potential of sustainable municipal wastewater treatment using fast-growing willow. Sci. Total Environ. 2021, 792, 148146. [Google Scholar] [CrossRef]
- Dastyar, W.; Raheem, A.; He, J.; Zhao, M. Biofuel Production Using Thermochemical Conversion of Heavy Metal-Contaminated Biomass (HMCB) Harvested from Phytoextraction Process. Chem. Eng. J. 2019, 358, 759–785. [Google Scholar] [CrossRef]
- Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schreurs, S.; Yperman, J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrolysis 2010, 87, 1–7. [Google Scholar] [CrossRef]
- Kuppens, T.; Van Dael, M.; Vanreppelen, K.; Thewys, T.; Yperman, J.; Carleer, R.; Schreurs, S.; Van Passel, S. Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J. Clean. Prod. 2015, 88, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Grigoras, I.F.; Stroe, R.E.; Sintamarean, I.M.; Rosendahl, L.A. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow. Bioresour. Technol. 2017, 231, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Raheem, A.; Wan Azlina, W.A.K.G.; Taufiq Yap, Y.H.; Danquah, M.K.; Harun, R. Thermochemical conversion of microalgal biomass for biofuel production. Renew. Sustain. Energy Rev. 2015, 49, 990–999. [Google Scholar] [CrossRef]
- Campenni’, L.; Nobre, B.P.; Santos, C.A.; Oliveira, A.C.; Aires-Barros, M.R.; Palavra, A.M.F.; Gouveia, L. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl. Microbiol. Biotechnol. 2013, 97, 1383–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, L.; Owende, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Gouveia, L.; Marques, A.E.; Da Silva, T.L.; Reis, A. Neochloris oleabundans UTEX #1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 2009, 36, 821–826. [Google Scholar]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef]
- Johnson, M.B.; Wen, Z. Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 2009, 23, 5179–5183. [Google Scholar] [CrossRef]
- Umdu, E.S.; Tuncer, M.; Seker, E. Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour. Technol. 2009, 100, 2828–2831. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, S.; Wang, Y.; Adhikari, S.; Dempster, T.A.; Wang, Y. Direct biodiesel production from wet microalgae assisted by radio frequency heating. Fuel 2019, 256, 115994. [Google Scholar] [CrossRef]
- Li, P.; Miao, X.; Li, R.; Zhong, J. In situ biodiesel production from fast-growing and high oil content chlorella pyrenoidosa in rice straw hydrolysate. J. Biomed. Biotechnol. 2011, 2011, 141207. [Google Scholar] [CrossRef] [Green Version]
- Jazzar, S.; Olivares-Carrillo, P.; Pérez de los Ríos, A.; Marzouki, M.N.; Acién-Fernández, F.G.; Fernández-Sevilla, J.M.; Molina-Grima, E.; Smaali, I.; Quesada-Medina, J. Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel. Appl. Energy 2015, 148, 210–219. [Google Scholar] [CrossRef]
- Malekghasemi, S.; Kariminia, H.R.; Plechkova, N.K.; Ward, V.C.A. Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass Bioenergy 2021, 150, 106126. [Google Scholar] [CrossRef]
- Zamalloa, C.; Boon, N.; Verstraete, W. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy 2012, 92, 733–738. [Google Scholar] [CrossRef]
- Frigon, J.C.; Matteau-Lebrun, F.; Hamani Abdou, R.; McGinn, P.J.; O’Leary, S.J.B.; Guiot, S.R. Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl. Energy 2013, 108, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Tao, Y.; Liu, Y.; Li, H. Stimulating methane production from microalgae by alkaline pretreatment and co-digestion with sludge. Environ. Technol. 2018, 41, 1546–1553. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Choi, S.P.; Lee, J.; Lee, J.H.; Sim, S.J. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 2009, 19, 161–166. [Google Scholar]
- Harun, R.; Danquah, M.K.; Forde, G.M. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 2010, 85, 199–203. [Google Scholar] [CrossRef]
- Lee, S.; Oh, Y.; Kim, D.; Kwon, D.; Lee, C.; Lee, J. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic escherichia coli strains. Appl. Biochem. Biotechnol. 2011, 164, 878–888. [Google Scholar] [CrossRef]
- Miranda, J.R.; Passarinho, P.C.; Gouveia, L. Bioethanol production from Scenedesmus obliquus sugars: The influence of photobioreactors and culture conditions on biomass production. Appl. Microbiol. Biotechnol. 2012, 96, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Rempel, A.; de Souza Sossella, F.; Margarites, A.C.; Astolfi, A.L.; Steinmetz, R.L.R.; Kunz, A.; Treichel, H.; Colla, L.M. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresour. Technol. 2019, 288, 121588. [Google Scholar] [CrossRef]
- Cardias, B.B.; Trevisol, T.C.; Bertuol, G.G.; Costa, J.A.V.; Santos, L.O. Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields. Waste Biomass Valorization 2020, 12, 175–183. [Google Scholar] [CrossRef]
- Kim, J.K.; Um, B.H.; Kim, T.H. Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J. Chem. Eng. 2012, 29, 209–214. [Google Scholar] [CrossRef]
- Luiza Astolfi, A.; Rempel, A.; Cavanhi, V.A.F.; Alves, M.; Deamici, K.M.; Colla, L.M.; Costa, J.A.V. Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour. Technol. 2020, 301, 122698. [Google Scholar] [CrossRef]
- Zhang, L.; Happe, T.; Melis, A. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 2002, 214, 552–561. [Google Scholar] [CrossRef]
- Chader, S.; Hacene, H.; Agathos, S.N. Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int. J. Hydrogen Energy 2009, 34, 4941–4946. [Google Scholar] [CrossRef]
- Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 2011, 36, 7872–7876. [Google Scholar] [CrossRef]
- Rashid, N.; Lee, K.; Mahmood, Q. Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresour. Technol. 2011, 102, 2101–2104. [Google Scholar] [CrossRef]
- Ruiz-Marin, A.; Canedo-López, Y.; Chávez-Fuentes, P. Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality. AMB Express 2020, 10, 191. [Google Scholar] [CrossRef]
- Liu, C.; Chang, C.; Cheng, C.; Lee, D. Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int. J. Hydrogen Energy 2012, 37, 15458–15464. [Google Scholar] [CrossRef]
- Nobre, B.P.; Villalobos, F.; Barragán, B.E.; Oliveira, A.C.; Batista, A.P.; Marques, P.A.S.S.; Mendes, R.L.; Sovová, H.; Palavra, A.F.; Gouveia, L. A biorefinery from Nannochloropsis sp. microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour. Technol. 2013, 135, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Xia, A.; Cheng, J.; Ding, L.; Lin, R.; Huang, R.; Zhou, J.; Cen, K. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis. Bioresour. Technol. 2013, 146, 436–443. [Google Scholar] [CrossRef]
- Batista, A.P.; Moura, P.; Marques, P.A.S.S.; Ortigueira, J.; Alves, L.; Gouveia, L. Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 2014, 117, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, J.; Alves, L.; Gouveia, L.; Moura, P. Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 2015, 153, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, R.; Ferreira, A.F.; Pinto, T.; Nobre, B.P.; Loureiro, D.; Moura, P.; Gouveia, L.; Silva, C.M. The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Convers. Manag. 2015, 89, 789–797. [Google Scholar]
- Ortigueira, J.; Pinto, T.; Gouveia, L.; Moura, P. Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum. Energy 2015, 88, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Usmanbaha, N.; Jariyaboon, R.; Reungsang, A.; Kongjan, P.; Chu, C.-Y. Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production. Energies 2019, 12, 2529. [Google Scholar] [CrossRef] [Green Version]
- Caputo, G.; Dispenza, M.; Rubio, P.; Scargiali, F.; Marotta, G.; Brucato, A. Supercritical water gasification of microalgae and their constituents in a continuous reactor. J. Supercrit. Fluids 2016, 118, 163–170. [Google Scholar] [CrossRef]
- Duman, G.; Uddin, M.A.; Yanik, J. Hydrogen production from algal biomass via steam gasification. Bioresour. Technol. 2014, 166, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Liao, Y.; Wu, Y.; Ma, X.; Chen, L. Characteristics of microalgae gasification through chemical looping in the presence of steam. Int. J. Hydrogen Energy 2017, 42, 22730–22742. [Google Scholar] [CrossRef]
- Raheem, A.; Cui, X.; Mangi, F.H.; Memon, A.A.; Ji, G.; Cheng, B.; Dong, W.; Zhao, M. Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification. Algal Res. 2020, 52, 102102. [Google Scholar] [CrossRef]
- Guan, Q.; Wei, C.; Ning, P.; Tian, S.; Gu, J. Catalytic Gasification of Algae Nannochloropsis sp. in Sub/Supercritical Water. Procedia Environ. Sci. 2013, 18, 844–848. [Google Scholar] [CrossRef] [Green Version]
- Onwudili, J.A.; Lea-Langton, A.R.; Ross, A.B.; Williams, P.T. Catalytic hydrothermal gasification of algae for hydrogen production: Composition of reaction products and potential for nutrient recycling. Bioresour. Technol. 2013, 127, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Tiong, L.; Komiyama, M. Supercritical water gasification of microalga Chlorella vulgaris over supported Ru. J. Supercrit. Fluids 2019, 144, 1–7. [Google Scholar] [CrossRef]
- Babich, I.V.; van der Hulst, M.; Lefferts, L.; Moulijn, J.A.; O’Connor, P.; Seshan, K. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 2011, 35, 3199–3207. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 2004, 110, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Wu, Q.; Tu, P. Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J. Appl. Phycol. 2000, 12, 147–152. [Google Scholar] [CrossRef]
- Pan, P.; Hu, C.; Yang, W.; Li, Y.; Dong, L.; Zhu, L.; Tong, D.; Qing, R.; Fan, Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour. Technol. 2010, 101, 4593–4599. [Google Scholar] [CrossRef]
- Silva, C.M.; Ferreira, A.F.; Dias, A.P.; Costa, M. A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. J. Clean. Prod. 2016, 130, 58–67. [Google Scholar] [CrossRef]
- Jamilatun, S.; Budhijanto, B.; Rochmadi, R.; Yuliestyan, A.; Hadiyanto, H.; Budiman, A. Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues. Int. J. Renew. Energy Dev. 2019, 8, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Aswie, V.; Qadariyah, L.; Mahfud, M. Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production. Bull. Chem. React. Eng. Catal. 2021, 16, 205–213. [Google Scholar] [CrossRef]
- Wang, K.; Brown, R.C.; Homsy, S.; Martinez, L.; Sidhu, S.S. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour. Technol. 2013, 127, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Couto, E.A.; Pinto, F.; Varela, F.; Reis, A.; Costa, P.; Calijuri, M.L. Hydrothermal liquefaction of biomass produced from domestic sewage treatment in high-rate ponds. Renew. Energy 2018, 118, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Dote, Y.; Sawayama, S.; Inoue, S.; Minowa, T.; Yokoyama, S. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 1994, 73, 1855–1857. [Google Scholar] [CrossRef]
- Minowa, T.; Yokoyama, S.; Kishimoto, M.; Okakura, T. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 1995, 12, 1735–1738. [Google Scholar] [CrossRef]
- Brown, T.M.; Duan, P.; Savage, P.E. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 2010, 24, 3639–3646. [Google Scholar] [CrossRef]
- Duan, P.; Savage, P.E. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res. 2011, 50, 52–61. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 2011, 102, 215–225. [Google Scholar] [CrossRef]
- Garcia Alba, L.; Torri, C.; Samorì, C.; Van Der Spek, J.; Fabbri, D.; Kersten, S.R.A.; Brilman, D.W.F. Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels 2012, 26, 642–657. [Google Scholar] [CrossRef]
- Biller, P.; Sharma, B.K.; Kunwar, B.; Ross, A.B. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 2015, 159, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Hoekman, S.K.; Cui, Z.; Jena, U.; Das, P. Hydrothermal liquefaction of marine microalgae biomass using co-solvents. Algal Res. 2019, 38, 101421. [Google Scholar] [CrossRef]
- Faeth, J.L.; Valdez, P.J.; Savage, P.E. Fast hydrothermal liquefaction of nannochloropsis sp. to produce biocrude. Energy Fuels 2013, 27, 1391–1398. [Google Scholar] [CrossRef]
- Barbosa, B.; Boléo, S.; Sidella, S.; Costa, J.; Duarte, M.P.; Mendes, B.; Cosentino, S.L.; Fernando, A.L. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. Bioenergy Res. 2015, 8, 1500–1511. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands | Elsevier Enhanced Reader. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators. SOIL 2018, 4, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Fernando, A.L.; Costa, J.; Barbosa, B.; Monti, A.; Rettenmaier, N. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy 2018, 111, 174–186. [Google Scholar] [CrossRef]
- Sameena, P.; Puthur, J.T. Heavy Metal Phytoremediation by Bioenergy Plants and Associated Tolerance Mechanisms. Soil Sediment Contam. 2021, 30, 253–274. [Google Scholar]
- Ierna, A.; Sortino, O.; Mauromicale, G. Biomass, seed and energy yield of Cynara cardunculus L. as affected by environment and season. Agronomy 2020, 10, 1548. [Google Scholar] [CrossRef]
- Garau, M.; Castaldi, P.; Patteri, G.; Roggero, P.P.; Garau, G. Evaluation of Cynara cardunculus L. and municipal solid waste compost for aided phytoremediation of multi potentially toxic element–contaminated soils. Environ. Sci. Pollut. Res. 2021, 28, 3253–3265. [Google Scholar] [CrossRef]
- Madejón, P.; Domínguez, M.T.; Fernández-Boy, E.; Paneque, P.; Girón, I.; Madejón, E. Soil hydraulic properties as the main driver in the establishment of biomass crops in contaminated soils. J. Environ. Manag. 2019, 233, 812–822. [Google Scholar] [CrossRef]
- Llugany, M.; Miralles, R.; Corrales, I.; Barceló, J.; Poschenrieder, C. Cynara cardunculus a potentially useful plant for remediation of soils polluted with cadmium or arsenic. J. Geochem. Explor. 2012, 123, 122–127. [Google Scholar] [CrossRef]
- Sánchez-Pardo, B.; Cantero, C.; Zornoza, P. Alleviation of arsenic stress in cardoon plants via the supply of a low cadmium concentration. Environ. Exp. Bot. 2015, 109, 229–234. [Google Scholar] [CrossRef]
- Sidella, S.; Consentino, S.L.; Fernando, A.L.; Costa, J.; Barbosa, B. Phytoremediation of soils contaminated with lead by arundo donax L. In WASTES–Solutions, Treatments and Opportunities II; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Liu, Y.N.; Xiao, X.Y.; Guo, Z.H. Identification of indicators of giant reed (Arundo donax L.) ecotypes for phytoremediation of metal-contaminated soil in a non-ferrous mining and smelting area in southern China. Ecol. Indic. 2019, 101, 249–260. [Google Scholar] [CrossRef]
- Praspaliauskas, M.; Žaltauskaitė, J.; Pedišius, N.; Striūgas, N. Comprehensive evaluation of sewage sludge and sewage sludge char soil amendment impact on the industrial hemp growth performance and heavy metal accumulation. Ind. Crops Prod. 2020, 150, 112396. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Chapoutot, P.; Bastianelli, D.; Lebas, F. Feedipedia. Available online: https://agritrop.cirad.fr/582540/1/ID582540.pdf (accessed on 1 January 2020).
- Fang, Y.R.; Liu, J.A.; Steinberger, Y.; Xie, G.H. Energy use efficiency and economic feasibility of Jerusalem artichoke production on arid and coastal saline lands. Ind. Crops Prod. 2018, 117, 131–139. [Google Scholar] [CrossRef]
- Negro, M.; Ballesteros, I.; Manzanares, P.; Oliva, J.; Saez, F.; Ballesteros, M. Inulin containing biomass for ethanol production. Appl. Biochem. Biotechnol. 2006, 129–132, 922–932. [Google Scholar] [CrossRef]
- Gengmao, Z.; Mehta, S.K.; Zhaopu, L. Use of saline aquaculture wastewater to irrigate salt-tolerant Jerusalem artichoke and sunflower in semiarid coastal zones of China. Agric. Water Manag. 2010, 97, 1987–1993. [Google Scholar] [CrossRef]
- Zhang, T.; Chi, Z.; Zhao, C.H.; Chi, Z.M.; Gong, F. Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Bioresour. Technol. 2010, 101, 8166–8170. [Google Scholar] [CrossRef]
- Hu, N.; Yuan, B.; Sun, J.; Wang, S.A.; Li, F.L. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl. Microbiol. Biotechnol. 2012, 95, 1359–1368. [Google Scholar] [CrossRef]
- Monti, A.; Amaducci, M.T.; Venturi, G. Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. Eur. J. Agron. 2005, 23, 136–145. [Google Scholar] [CrossRef]
- Xue, S.; Lewandowski, I.; Wang, X.; Yi, Z. Assessment of the production potentials of Miscanthus on marginal land in China. Renew. Sustain. Energy Rev. 2016, 54, 932–943. [Google Scholar] [CrossRef]
- Usmani, R.A. Potential for energy and biofuel from biomass in India. Renew. Energy 2020, 155, 921–930. [Google Scholar] [CrossRef]
- Zheng, C.; Iqbal, Y.; Labonte, N.; Sun, G.; Feng, H.; Yi, Z.; Xiao, L. Performance of switchgrass and Miscanthus genotypes on marginal land in the Yellow River Delta. Ind. Crops Prod. 2019, 141, 111773. [Google Scholar] [CrossRef]
- Rusinowski, S.; Krzyżak, J.; Sitko, K.; Kalaji, H.M.; Jensen, E.; Pogrzeba, M. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Environ. Pollut. 2019, 250, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; Van Groenigen, K.J.; Weih, M.; et al. Bioenergy from “surplus” land: Environmental and socio-economic implications. BioRisk 2012, 7, 5. [Google Scholar] [CrossRef]
- Fernando, A.L.; Boléo, S.; Barbosa, B.; Costa, J.; Duarte, M.P.; Monti, A. Perennial Grass Production Opportunities on Marginal Mediterranean Land. Bioenergy Res. 2015, 8, 1523–1537. [Google Scholar] [CrossRef]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; et al. Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Fijalkowski, K.; Rosikon, K.; Grobelak, A.; Hutchison, D.; Kacprzak, M.J. Modification of properties of energy crops under Polish condition as an effect of sewage sludge application onto degraded soil. J. Environ. Manag. 2018, 217, 509–519. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.; Patel, A.; Gami, B.; Patel, P. Energy balance, GHG emission and economy for cultivation of high biomass verities of bamboo, sorghum and pearl millet as energy crops at marginal ecologies of Gujarat state in India. Renew. Energy 2020, 148, 816–823. [Google Scholar] [CrossRef]
- Rodrigues de Sousa, E.M. Pinheiro-Bravo: A Conífera Mais Abundante em Portugal. Available online: https://florestas.pt/conhecer/pinheiro-bravo-a-conifera-mais-abundante-em-portugal/ (accessed on 8 July 2021).
- Direção Nacional das Fileiras Florestais Culturas Energéticas Florestais—Primeira Abordagem do Levantamento da Situação Actual. Available online: http://www2.icnf.pt/portal/florestas/fileiras/resource/doc/biom/biomass-gtce-jun10 (accessed on 16 November 2018).
- Tzvetkova, N.; Miladinova, K.; Ivanova, K.; Georgieva, T.; Geneva, M.; Markovska, Y. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil—PubMed. J. Environ. Biol. 2015, 36, 145–151. [Google Scholar]
- Kiser, L.C.; Fox, T.R. Short-rotation Woody Crop Biomass Production for Bioenergy. In Biofuel Crop Sustainability; Singh, B.P., Ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 205–238. ISBN 9781118635797. [Google Scholar]
- Blanco-Canqui, H. Energy Crops and Their Implications on Soil and Environment. Agron. J. 2010, 102, 403–419. [Google Scholar] [CrossRef]
- Dimitriou, I.; Aronsson, P. Willows for energy and phytoremediation in Sweden. Unasylva 2005, 56, 47–50. [Google Scholar]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M. Extensive willow biomass production on marginal land. Pol. J. Environ. Stud. 2019, 28, 4359–4367. [Google Scholar] [CrossRef]
- Bart, S.; Motelica Heino, M.; Miard, F.; Joussein, E.; Soubrand, M.; Bourgerie, S.; Morabito, D. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. CATENA 2016, 136, 44–52. [Google Scholar]
- Janssen, J.; Weyens, N.; Croes, S.; Beckers, B.; Meiresonne, L.; Van Peteghem, P.; Carleer, R.; Vangronsveld, J. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. Int. J. Phytoremed. 2015, 17, 1123–1136. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B.; Aronsson, P.; Eriksson, J. Changes in Organic Carbon and Trace Elements in the Soil of Willow Short-Rotation Coppice Plantations. Bioenergy Res. 2012, 5, 563–572. [Google Scholar] [CrossRef]
- Salam, M.M.A.; Mohsin, M.; Pulkkinen, P.; Pelkonen, P.; Pappinen, A. Effects of soil amendments on the growth response and phytoextraction capability of a willow variety (S. viminalis × S. schwerinii × S. dasyclados) grown in contaminated soils. Ecotoxicol. Environ. Saf. 2019, 171, 753–770. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Ganjegunte, G.; Niu, G.; Ulery, A.; Flynn, R.; Enciso, J.M.; Meki, M.N.; Kiniry, J.R. Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality. Agric. Water Manag. 2020, 228, 105894. [Google Scholar] [CrossRef]
- Maucieri, C.; Cavallaro, V.; Caruso, C.; Borin, M.; Milani, M.; Barbera, A.C. Sorghum biomass production for energy purpose using treated urban wastewater and different fertilization in a mediterranean environment. Agriculture 2016, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Invasoras Acacia Dealbata (Mimosa). Available online: http://invasoras.pt/wp-content/uploads/2012/10/Acacia-dealbata.pdf (accessed on 23 October 2017).
- Dickmann, D.I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass Bioenergy 2006, 30, 696–705. [Google Scholar] [CrossRef]
- Djomo, S.N.; Kasmioui, O.E.; Ceulemans, R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: A review. GCB Bioenergy 2011, 3, 181–197. [Google Scholar] [CrossRef]
- Williams, P.R.D.; Inman, D.; Aden, A.; Heath, G.A. Environmental and sustainability factors associated with next-generation biofuels in the U.S.: What do we really know? Environ. Sci. Technol. 2009, 43, 4763–4775. [Google Scholar] [CrossRef] [PubMed]
- Vázquez Núñez, E.; Fernández-Luqueño, F.; Peña-Castro, J.M.; Vera-Reyes, I. Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products—A Review. Appl. Sci. 2021, 11, 2982. [Google Scholar]
- Liu, Z.; Tran, K.Q. A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol. Environ. Saf. 2021, 226, 112821. [Google Scholar] [CrossRef]
- Laval-Gilly, P.; Henry, S.; Mazziotti, M.; Bonnefoy, A.; Comel, A.; Falla, J. Miscanthus × giganteus Composition in Metals and Potassium After Culture on Polluted Soil and Its Use as Biofuel. Bioenergy Res. 2017, 10, 846–852. [Google Scholar] [CrossRef]
- Danelli, T.; Sepulcri, A.; Masetti, G.; Colombo, F.; Sangiorgio, S.; Cassani, E.; Anelli, S.; Adani, F.; Pilu, R. Arundo donax L. Biomass Production in a Polluted Area: Effects of Two Harvest Timings on Heavy Metals Uptake. Appl. Sci. 2021, 11, 1147. [Google Scholar] [CrossRef]
- Raikova, S.; Piccini, M.; Surman, M.K.; Allen, M.J.; Chuck, C.J. Making light work of heavy metal contamination: The potential for coupling bioremediation with bioenergy production. J. Chem. Technol. Biotechnol. 2019, 94, 3064–3072. [Google Scholar] [CrossRef]
- Uchman, W.; Skorek-Osikowska, A.; Werle, S. Evaluation of the potential of the production of electricity and heat using energy crops with phytoremediation features. Appl. Therm. Eng. 2017, 126, 194–203. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, W.W.; Jiang, H.; Yu, H.Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6367–6398. [Google Scholar] [CrossRef]
- Dilks, R.T.; Monette, F.; Glaus, M. The major parameters on biomass pyrolysis for hyperaccumulative plants—A review. Chemosphere 2016, 146, 385–395. [Google Scholar] [CrossRef]
- Grottola, C.M.; Giudicianni, P.; Pindozzi, S.; Stanzione, F.; Faugno, S.; Fagnano, M.; Fiorentino, N.; Ragucci, R. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate. Waste Manag. 2019, 85, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, R.A.; Kelly, W.J.; Satrio, J.A.; Ruiz-Felix, M.N.; Fetterman, M.; Wynn, R.; Hagel, K. Utilization of Grasses for Potential Biofuel Production and Phytoremediation of Heavy Metal Contaminated Soils. Int. J. Phytoremed. 2014, 17, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, Z.; Sun, Y.; Shi, W.; Han, Z.; Xiao, X.; Zeng, P. Stabilization of heavy metals in biochar pyrolyzed from phytoremediated giant reed (Arundo donax) biomass. Trans. Nonferrous Met. Soc. China 2017, 27, 656–665. [Google Scholar] [CrossRef]
- Tian, Y.L.; Zhang, H.Y.; Guo, W.; Wei, X.F. Morphological Responses, Biomass Yield, and Bioenergy Potential of Sweet Sorghum Cultivated in Cadmium-Contaminated Soil for Biofuel. Int. J. Green Energy 2014, 12, 577–584. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Trögl, J.; Stefanovska, T.; Shapoval, P.; Erickson, L. Preliminary Results on Growing Second Generation Biofuel Crop Miscanthus × giganteus at The Polluted Military Site in Ukraine. Nov. Biotechnol. Chim. 2016, 15, 77–84. [Google Scholar] [CrossRef] [Green Version]
Energy Crops | Cellulose (% w w−1) | Hemicellulose (% w w−1) | Lignin (% w w−1) | Ash (% w w−1) | Extractives (% w w−1) | Other Components (% w w−1) |
---|---|---|---|---|---|---|
Cynara cardunculus (stalks) [7,26] | 34 | 18.5 | (14–23) | (5–11) | (13–21) | - |
Cynara cardunculus (seeds) [27] | - | - | - | - | - | Fat content (17–24), protein (26–30), and fiber (20–28) |
Arundo donax [6,28,29] | (21–45) | (7–36) | (6.7–34) | (2.3–8) | (12–22) | - |
Cannabis sativa [7,30] | (33–74) | (7.6–16.6) | (2.2–29) | (2.6–7.6) | (3.7–20) | (0.3–23.1) |
Helianthus tuberosus (tubers) [6,31,32,33] | (28.5–49.4) | (10.2–16.8) | (14.5–22.2) | 4.7 | 12.1 | N (1.45–1.55) |
Linum usitatissimum [34] | - | - | - | - | - | Fatty acids [stearic (2–4), palmitic (4–7), linoleic (35–40), oleic (25–40), and α-linolenic (25–60)] |
Miscanthus × giganteus [6,29] | (43–58) | (16–34) | (5.8–11) | 2 | (9–17) | - |
Sorghum bicolor [7,25,35] | (23.7–44.6) | (20–27) | (4.4–24.7) | 0.4 | - | - |
Panicum virgatum [7,35,36,37] | (31.8–45) | (20.3–36) [xylan (25–27)] | (7.4–31.2) | (3.2–5.7) | - | - |
Energy Crops | Cellulose (% w w−1) | Hemicellulose (% w w−1) | Lignin (% w w−1) | Ash (% w w−1) | Extractives (% w w−1) | Other Components (% w w−1) |
---|---|---|---|---|---|---|
Acacia dealbata (wood) [266,267] | (42.4–50.9) | (17–29) [xylan (16.4–19.3)] | (19.3–20.1) | (0.5–1.1) | (3.1–5.85) | - |
Acacia dealbata (bark) [266,267] | 19 | 21.6 | 18.6 | 3.3 | 37.5 | - |
Acacia dealbata (leaves and flowers) [266,267] | 43.1 | (21.6–22.2) [xylan: 18.7] | 25.9 | (0.5–1.1) | 8.3 | - |
Pinus pinaster [268,269] | [40–50] | [15–24] | [25–33] | 0.16 | 2.9 | - |
Paulownia tomentosa [270,271,272,273,274] | (39.2–49) | (17.98–28.1) | (17.8–37.6) | (0.5–4.6) | (5.6–8.8) | Holocellulose (39.2–61.5) |
Populus [258,275] | (42–49) | (16–23) | (21–29) | 1.8 | - | - |
Salix viminalis [276,277,278,279,280,281,282] | (37–56) | (13–26.7) | (12–37.4) | (0.6–2) | (6.3–7.75) | Holocellulose (63.7–64.5) |
Low ILUC Energy Crops Developed in Contaminated and Marginal Soils | |||
---|---|---|---|
Treatment or Conversion Process | Benefits | Constraints | |
General aspects | Cynara cardunculus has been shown to be an ideal energy crop to be cultivated and grown in land with low fertility (marginal [56,462] and degraded), serving as protection against soil degradation and erosion caused by intense rainfall [55] improving the fertility of this type of soil [464]. Cardoon is a species with the capacity to serve as a phytoremediation plant in the recovery of soils contaminated with potentially toxic elements (PTE) [e.g., Pb, arsenic (As), Cu, Zn, Cd e antimony (Sb)] [465] and with trace elements [466]. Cardoon was also studied in contaminated soils with As and Cd, proving to be a species that tolerates this type of terrain. The Cd was retained in the aerial part of the plant (old leaves) and the As in the roots, therefore, cardoon is a useful crop to extract the Cd present in soil, and, in the case of land highly contaminated with As, it serves as a stabilizer for that land [467,468]. Giant reed presents wide diversity advantages in relation to other energy crops such as the adaptation to many environments, soils, and cultivation conditions, not requiring fertilizers, and lastly, the high yields and productivities of the crop [76]. Giant reed can be applied for the phytoremediation of contaminated soils [29,469,470]. Cannabis sativa is a crop that does not require the incorporation of pesticides and nutrients, a factor that ensures the proper use of the soil, prevents the development of weeds, and allows the extraction of HMs from the soil [471], and organic contaminants and radionuclides, acting as an excellent phytoextractor of contaminants and soil phytoremediator, namely in the roots. Helianthus tuberosus is utilized for soil recuperation in disturbed industrial sites (e.g., soils such as salting, alkaline, coal-mining, and oil-polluted) and to prevent land erosion [130,472,473], and is a species that resists the attack of pests and the appearance of diseases [133]. Jerusalem artichoke due to its agronomic characteristics, like tolerance to salt stresses and dry conditions, presents a great resistance to frost and plant diseases [31,474,475,476,477], being a species that tolerates alkaline soils and grows easily in cold and dry climates [149] including very high temperatures [133]. Helianthus tuberosus can grow well on marginal lands [19,143] and in poor soils [478], therefore avoiding the contest for arable lands that present food cultures. One of the HMs that linseed can remove more easily is Cd, however, it can also remove metals such as Cu, Zn, Ni, and Pb from the soil. Linum usitatissimum is a species that also tolerates, absorbs, and stores high amounts of petroleum hydrocarbons present in contaminated soils, and is widely used in oil countries in the Middle East. After its application as a phytoremediation material, it can be used as a fiber and for the production of linseed oil [154]. It has been claimed that cultivation of the miscanthus in marginal [12,460,479,480,481] and contaminated soils [482,483,484,485] has the potential to restore soil properties, halting degradation [486], desertification, and contamination [9,178,462,487]. Some sorghum genes present high productivity in marginal soils, a low amount of nutrients, and do not require high water requirements [41]. Sorghum can grow on land considered marginal [188] due to the multiple advantages of this species, such as high tolerance to water stress, it has short growth cycles, namely, between 3 to 5 months, and can achieve high carbon sequestration rates equal to 50 g m−2 day−1 [460]. Sorghum has been shown to be an excellent phytoremediator and phytostabilizer of contaminated soils [238] due to the several advantages it presents, such as high biomass formation, easily adaptable to different types of environments and withstands various types of contaminants among them HMs (such as Cd and Zn), being able to accumulate them in the species itself, therefore, decontaminating the soil [41]. Sorghum bicolor is mainly characterized by its ability to grow in arid soils, being drought tolerant, producing high biomass yields [41], and presenting a low need for fertilizer, therefore, it can develop in marginal soils [197,488]. Acacia is tolerant to soils of little fertility [263]. Pinus pinaster is considered a species of fast growth and tolerant to poor soils, being applied to reforest degraded areas and in the stabilization of dunes, to protect intensive plantations (including agricultural fields), in the conservation of soils mainly in areas at risk of erosion [320], to combat soil degradation and control hydrological systems [489]. Paulownia tomentosa has a high potential to be implemented in contaminated soils for later recovery, in abandoned land (previously used for agriculture) with low water needs, in soils that may suffer from erosion for its later stabilization, and in marginal soils [490]. Hybrid species of Paulownia (P. tomentosa × fortune and P.elongata × fortune) have great advantages in the absorption of HMs in contaminated soils, being seen for its phytoremediator potential. In these varieties, the accumulation of K and calcium (Ca) occurs in the stems, the Pb, Zn, and Cu occur in the leaves, and the accumulation of Cd, Na, magnesium (Mg), and Fe is given in the roots [491]. At the soil level, the Populus is often applied for phytoremediation in the recovery of contaminated areas [492] and agricultural land that has suffered degradation over time [493], increasing the organic matter in the soil. Populus alba L. at the soil level allows the recovery of land (marginal/degraded) and polluted soils (phytoremediation with hybrids Populus alba × tremula and Populus tremula × alba) [342]. Populus alba L. has been shown to have a high potential for decontaminating water bodies with high amounts of nitrates (NO3−), namely, between 100 and 300 mg L−1 [367]. In terms of the environment and the soil, Populus nigra L. plantations reduce the degree of pollution, balancing the microclimate [260]. Willow can successfully grow in many types of soil ranging from periodically flooded to marginal lands and polluted soils, with the optimal conditions being well- drained sandy and wet loamy soil with a pH range of 5.5 to 7.5 [367]. Dry soils are not suitable for willow cultivation. Currently, willow is used for protecting soils from water erosion [368] and phytoremediation [494]. Salix viminalis is applied to marginal lands [495], in contaminated soils for the phytoextraction of heavy metals such as As, Pb, Sb [496], Zn e Cd [497,498] through the wide extension of its roots and in degraded soils (poor in nutrients) [499] being in all cases for its subsequent recovery. | For a hemp plantation initially applied as a phytoremediator to be used in the bioenergy sector, it is necessary to evaluate the presence of HMs, radionuclides, and organic contaminants in each process [122] as these components can affect the balance of the system. Despite the wide advantages of linseed as soil phytoremediation, as the accumulation of HMs in the species occurs, its growth is lower, however, their biomass formation [154]. In arid areas it is also possible to use WW in sorghum plantations, being necessary an adequate use and control of the soil to avoid the accumulation of sodium (Na) present in the waters [500] reusing low-quality water that does not compete with drinking water and still has some nutrients [501]. Acacia leaves present a high amount of N that, after falling, nourish the soil and fixes this nutrient [502]. However, if this component is very high, it can have harmful consequences for the ecosystem, increasing the growth of invasive species that densify largely the forest, preventing the passage of water, a factor that increases the degree of erosion, avoiding the development and continuity of other species like the indigenous Populus when applied as SRWC in silviculture, it cannot be applied to degraded soils, as its productivity and yield are low, and the investment is not very profitable [503]. Populus to increase productivity in plantations destined for bioenergy, it is necessary to apply water, fertilizers, and examine the appearance of weeds, factors that increase the overall costs of the installation. To make it viable and profitable, one must select the most appropriate hybrids and apply appropriate silviculture measures to reduce costs [257]. A benefit is the reduction of GHG emissions since [504] evaluated that fast-growing woody species can produce 9 to 161 times less GHG than coal, producing 14.1 to 85.9 times more energy than coal. The only disadvantage is the need for irrigation to ensure the economic viability of the plantation [505]. | |
Pre-treatment | General | It allows reducing the quantities of contaminants [HMs, minerals, persistent organic pollutants (POPs), among others] present in the raw material to avoid its propagation in the following stages of the process or in the formed products [394]. | If the application of pre-treatment is not efficient in eliminating the contaminants, in the following steps, the processes that use catalysts will also be contaminated or the degradation of biological products may occur [394]. |
Phytomining | It allows the recovery of HMs with high added value at an industrial level (e.g., battery production) [506] that are accumulated in the aerial part, leaves, or roots of certain species, closing the life cycle of these metals. | ||
Extraction treatment | It extracts the HMs found in the waste material from phytoremediation, using an extracting agent such as ammonium (acetate, nitrate, and oxalate), pure water, ethylenediaminetetraacetic acid (EDTA), and H2SO4. Before submitting the material to the extracting agent, it can be squeezed to obtain a liquid phase or heat-treated to obtain a solid phase, both rich in HMs [507]. | When the HMs are in the liquid phase, a previous treatment is necessary to extract the metals, for example, the application of a coagulant in the liquid squeeze to reduce the concentration of Cd. Biomass reduction from phytoremediation is lower when the extraction is applied before heat treatment [507]. | |
Microbial treatment | It allows for the microbial stabilization of biomass as well as the incorporation of moisture into the organic material and can be applied under anaerobic (fermentation) and aerobic (composting) conditions. When any of the two types of microorganisms (anaerobic or aerobic) are used, the decomposition of organic matter always occurs into substances such as alcohols, microbial, organic acids, H2O, H2S, CO2, ammonia (NH3), methane, SO42−, phosphate (PO42−), as well as an energy release. The HMs stored in the extraction solution can be recycled. This is a technology that has multiple advantages, being highly efficient. It has low energy requirements, and protects the environment, through different types of extraction: semi-bionic, microwave, ultrasonic, and supercritical fluid, among others [507]. | The reduction of biomass from phytoremediation is lower when a microbial treatment is applied before heat treatment. Other methods are recommended when the content of HMs found in the species is high. For the reason described above, the microbial treatment is more efficient for biomass with low HMs. Treatment that presents a high risk of producing secondary contaminants, a factor that limits its environmental sustainability [507]. | |
Compression landfill treatment | It has been widely used, being easy and simple to apply. When the species used for phytoremediation are compressed, a high concentration of HMs and chelating substances are obtained [507]. | Treatment that presents a high risk of producing secondary contaminants [507], a factor that limits its environmental sustainability. | |
Synthesis of nanomaterials (treatment) | This new treatment has a lower cost and lower environmental impact when compared to the traditional method of metal nanoparticles. The biomass used for phytoremediation can be reduced up to 100% when this method is applied. The reduction of biomass from phytoremediation is greater when this treatment is applied as well as other thermochemical conversion technologies such as pyrolysis, gasification, and combustion. It is a technology with a low level of second-degree contamination, therefore, in this sense, it has no environmental impact [507]. | There are not enough studies or applications of this type of treatment when it comes to biomass applied in phytoremediation systems (including its residues), therefore, containing HMs. When residues from phytoremediation are used, the application of this type of treatment is costly and complicated [507]. | |
Thermochemical conversion process | General | Metals such as Zn and Pb can be largely retained (greater than 90%) in the solid phase and at temperatures ranging between 220 °C and 900 °C. In the by-products, several metals can be found, being later used for other applications as in the case of Zn, used as a catalyst to obtain furans and acetates; gaseous by-products can be used as synthesis gas (high presence of methane and H2); by-products obtained in the solid phase can be used as adsorbents for metals (after their leaching). Finally, the Cd can be applied for the photodegradation of contaminants present in water bodies [506]. | In any thermochemical process, the main constraints are the translocation of contaminants in the different phases of the products and by-products, as well as the possibility that they return to the environment, therefore, to the air, soil, or water bodies. The As (metalloid) and Cd (metal) in this type of process can completely leave the system at 900 °C [506], without its recovery being possible, causing an environmental risk. |
Combustion | From all the thermo- and biochemical conversion technologies of contaminated biomass into energy, combustion presents the greatest environmental advantages, especially when compared with pyrolysis and composting [394]. Some additives incorporated into the system such as kaolin allow the removal of metals such as Zn (88.1% removed) and Cd (91.2%) and others such as activated carbon, allow the elimination of polycyclic aromatic hydrocarbons (99%) and metals such as Cd (97.6%) and Zn (99.1%), all of which are from the gaseous phase. Kaolin also helps to lower NOx in the gas phase to environmentally acceptable levels. In some studies, ash from contaminated biomass with HMs contains less metal than the legally permitted limit value, so this type of ash can be reused as fertilizer for application in agricultural and forestry systems and is no longer considered a hazardous waste [507]. During combustion, NOx compounds are formed and released. However, when the nitrogen uptake of biomass from contaminated soils is very similar to the biomass that develops on uncontaminated soils, the amount of NOx emitted will also be similar in both cases and therefore, cannot be considered a greater environmental impact when it comes from contaminated soils [178]. When the raw material is contaminated biomass with HMs and for cases where energy (heat and electricity in a cogeneration system) is produced in a closed-type cycle, in which there are no leaks in the system, the release of contaminated gases does not occur to the atmosphere. However, metals can also be present in the solid phase, requiring proper treatment of the material. Miscanthus × giganteus applied in polluted soil with several types of HMs such as Cu, Ni, Zn, Cd, Cr, Pb, and K presents a diversified distribution of metals throughout the plant as in the aerial part (stems and leaves), rhizomes, and roots. Ni and Cr are not stored throughout the plant and the remaining metals (with the exception of K) accumulate mainly in the roots and rhizomes, a factor that facilitates the use of the aerial part (the least contaminated) to bioenergy, in combustion systems by the generation of contaminants to be lower, mainly in the gas phase [508]. Arundo donax L. was evaluated in soils contaminated with several HMs, including Cu, Cd, and Zn. In the third year of planting, the giant r managed to remove 2.09 kg ha−1 of Cu from the soil; 0.007 kg ha−1 of Cd, and 3.87 kg ha−1 of Zn. With these results, it is possible to guarantee the potential of this species for phytoextraction and later be applied in energy conversion processes such as combustion and anaerobic digestion [509]. | If residues from biomass used for phytoremediation are burned, many components such as CO, HMs, NOx, among others, are released through fly ash causing a second-degree of contamination. For this reason, it is necessary to properly handle and capture the ashes, making them unsuitable for reuse due to the amount of metals in them. Some additives incorporated into the system prevent part of the HMs from phytoremediation residues from being transported to the gaseous phase. Treatment that presents a high risk of producing secondary contaminants, a factor that limits its environmental sustainability. Regarding biochar as a fertilizer, when it has high amounts of HMs, these metals may leach into groundwater and even into the soil, and for this reason, it is necessary to carry out a physicochemical analysis of the biochar (in terms of the amount of HMs) to ensure environmental safety before its application [507].When biomass that is contaminated with HMs is subjected to a combustion process, strict care is needed to keep the conditions as controlled as possible to avoid those metals or other contaminants are not emitted in gases and fly ash that are released without any type of control, it being also required that the solid material is disposed of the system with due care and safety [178]. Combustion (also including anaerobic digestion) are the two technologies that pose the greatest risk of emitting metals into the environment without them being fully retained. When biomass contaminated with HMs is used, pollutants (metals) are released into the atmosphere, at the point where energy is produced [510]. Considering the study by Laval-Gilly et al., 2017 [508], when high amounts of K are stored in the aboveground part of the biomass, this decreases the efficiency of the combustion process due to the formation of slag and scale inside the reactor. Combustion is considered an inappropriate technology when it comes to biomass from soils not suitable for agriculture (marginal). This only happens when yields are low and there is a higher concentration of ash and N, which leads to a heavier emission of pollutants such as NOx, particles in fly ash and CO2 [460]. | |
Gasification | When a temperature below 1000 °C is applied, elements such as Pb, As, Cd and Zn are volatile. However, to prevent this, compounds such as silicon dioxide (SiO2), calcium sulfate (CaSO4), and aluminium oxide (Al2O3) can be incorporated into the system as they reduce the volatilization of Pb, Cd, and Zn. Likewise, when a temperature below 1000 °C is applied, elements such as Cu, Ni, Mn, and Co are not volatile [507]. Several species including Miscanthus × giganteus and Panicum virgatum L. contaminated with HMs (Zn, Pb, and Cd) were processed in a fixed bed gasifier that operates at atmospheric pressure to produce synthesis gas with a certain calorific value to be used in cogeneration systems. The species that best supports the Pb and Zn contained in the soil is miscanthus, however, both species have potential as phytostabilizer material for soils polluted with HMs. The LHV value of gases obtained with miscanthus was 3.68 MJ m−3 and in the case of switchgrass, it was 2.77 MJ m−3 [511]. Mn is a type of metal that can be condensed from the gas phase after the application of a gas cleaning or purification system [394]. | The metals found in greater proportion in the gas phase are Pb, Cd, and Zn. Factors such as operating conditions (pressure and temperature), pre and post-treatment, the type of gasification agent, the type of reactor (gasifier) used based on the bed (fixed, fluidized, dragged, among others), the reactor construction material, and finally, the chemical speciation of metals, affect the quality of the synthesis gas and the distribution of HMs, when contaminated biomass is used as raw material. Sometimes high concentrations of HMs such as Ni, Fe, Cr, Cu, and molybdenum (Mo) are found in the synthesis gas. This occurs due to the release of these from the gasifier caused by several factors such as the type of material in the reactor, the functioning of the refrigeration system, and the type of additives or lubricants, among others [394]. In this system, metal oxides are released from the contaminated biomass, which must be stored in the slag and the metals found in fly ash must be subjected to a cleaning system such as that are applied in the gas phase of the combustion process [178]. In the gas phase, there are several HMs, being present in different ways: Hg and Cd can be found in large quantities; Co can be partially or totally in this phase with temperatures around 500 °C and 800 °C and finally, metals such as Zn, Pb, Ni, vanadium, As, Cd, Cr, and Sb are present when temperatures are below 500 °C [394]. As this is the phase of interest in this type of system, a gas cleaning process or separation of these metals is always necessary. | |
Pyrolysis | To produce biofuels as well as other forms of energy such as thermal (heat recovery) and electrical (large scale), this thermochemical conversion technology is the most promising when biomass contaminated with HMs is used as a raw material [506]. The pyrolysis of leaves and branches of contaminated species can be carried out mixed rather than separately, to facilitate the process and take advantage of all the constituent parts of the cultures, providing greater environmental safety [394]. It is advisable for proper implementation of the process a solid particle size of the contaminated biomass smaller than 0.50 mm to guarantee the production of a liquid product (bio-oil) free of metals as well as the concentration of volatiles and refractories in the bio-coal. When Cu-contaminated biomass is treated (with 1% in the material), the best option is rapid pyrolysis, in a type of fixed-bed reactor, and at a temperature of 500 °C. To guarantee the presence of HMs in the biochar, a fluidized bed reactor can be used at a temperature of 600 °C or flash-type pyrolysis operating at lower temperatures can be applied in the same type of reactor (coupled to a hot gas filter), therefore, around 350 °C. The selection of the optimal operating temperature will depend on the boiling or melting point as well as the amount of HMs present in the biomass. For these reasons, it is important to emphasize that elements such as As, Pb, Hg, and Cd are very volatile, Mo, Zn, Cu, and Ni are semi-volatile and finally, Cr, vanadium, Co, and Mn are not volatile. Fast pyrolysis allows the pyrolytic decomposition of biomass contaminated with HMs, obtaining a bio-oil with excellent properties, therefore, high yield and HHV value as well as low concentration of HMs. When it is desired to accumulate HMs in the waste material, the application of pyrolysis is more promising than in the case of combustion and gasification [394]. In this type of system, when biomass contains metals such as Ni, Zn, and Pb, they react as catalysts, boosting the hydrogenation reaction to produce organic acids, accelerating the formation of bio-oil, and improving its properties. When residues from biomass used for phytoremediation are subjected to a pyrolysis process, there is a distribution of HMs between the 3 resulting phases (solid, liquid, and gas) of the system. The HMs amount in each phase will depend on the conditions (such as temperature) under which the process is carried out. For example, in a pyrolytic system, as the temperature was increased, the presence of Cr in the bottom ash was also higher when compared to a combustion-type system. The amount of Cr in the gas phase in a pyrolysis process was slightly lower than the obtained in the combustion residue of the same biomass at the same temperature (350 °C). When flash-type pyrolysis is applied, it is possible to recover part of the HMs in the solid phase, therefore, in the charcoal. The incorporation of additives [NaOH, Al2O3, calcium dihydrogenphosphate (Ca(H2PO4)2), calcium carbonate (CaCO3), iron(III) chloride (FeCl3), among others] allows to reduce the leaching of HMs from biochar, therefore, these additives can react with the HMs and produce stable compounds while the pyrolytic process takes place. Some types of biochar can be used as additives in phytoremediation systems in soils contaminated with HMs, boosting the growth of the species, and improving the biochemical characteristics of the soil. When the bio-oil has a certain amount of HMs, it can be removed using different types of treatments such as extraction, cation exchange, and separation through solvents, among others [507]. In the case of biomass contaminated with metals such as Zn and Cd, this technology has more advantages when compared to combustion because it presents a smaller amount of metals in the exhaust flow (or outflow of gases) [510]. Pyrolysis allows the storage of up to 80% of metals in the solid phase (coal) and the production of a liquid phase (bio-oil) suitable for bioenergy [510]. Elements contained in biomass such as Ni and Cu can act as catalysts within a pyrolytic reactor to produce bio-oil and gaseous compounds. Most of the HMs are found in the solid phase known as biochar, supporting metallic nanoparticles, used to catalyze and eliminate contaminants and as an energy converter and accumulator. When the metallic nanoparticles production is required and the biomass consists of elements with a pyrolytic behavior such as Ni, Co, Cu, and Zn, the system has a lower operating cost, is more sustainable, as it avoids the use of extra chemical components, simplifying the process. Fast pyrolysis systems require soluble catalysts that can penetrate the biomass, to ensure greater control over biomass decomposition [512]. The two most suitable technologies for high productivity of bio-oil and biochar rich in HMs (Cu, Zn, Cd, Pb, and Ni) are flash and fast pyrolysis. Fluidized bed reactors can retain a greater amount of HMs (Cu, Zn, Cd, Pb, and Ni) in the solid phase when operating at higher temperatures and ablative type reactors store a greater number of metallic pollutants in the biochar at a lower temperature [513]. When slow pyrolysis is applied to contaminated biomass (rhizomes of Arundo donax L. and leaves and branches of Populus nigra L.) with Pb, Zn, Cd, and Cu, it is possible to achieve a mass and volume reduction of the material, producing a vapor phase (fuel) free of pollutants, being the storage of metals in the solid or biochar phase. However, when the material contains essentially Cd, it is required to operate the reactor at low temperatures (below 430 °C) to obtain a fuel vapor without metals. If the biomass presents a greater proportion of the remaining HMs (Pb, Zn, and Cu), the system must be operated at higher temperatures (maximum value of 600 °C) to produce charcoal with a greater surface area and lower mobility of the metals [514]. Grass species such as Panicum virgatum L. used in phytoremediation systems for soils polluted with Pb underwent a rapid pyrolysis process without affecting the distribution of products in the system by the presence of the metal [515]. Pyrolysis of the Arundo donax L. species contaminated with metals such as As, Cd, and Pb was applied to determine if there was pollution to the environment. The system required the incorporation of other compounds such as CaCO3, NaOH, Al2O3, and FeCl3 to ensure the fixation of metals in the biochar. The results showed that 97% of Cd and 37% of As were stabilized in the biochar using 5% Al2O3, at a temperature of 250 °C and a reaction time of 2 h. In the case of Pb, 57% of it was fixed in biochar using 5% CaCO3, at 400 °C for 1 h [516]. It can be stated that the giant reed cultivated in contaminated soils has the potential to be applied in pyrolysis systems since in most of the studies, the HMs are retained in the solid or biochar phase, being possible its later recovery. | Slow pyrolysis of biomass contaminated with HMs presents a high content of HMs in the bio-oil (with low yield) and produces a low amount and variety of organic compounds. Factors such as particle size, typology of contaminated biomass, pyrolysis (including operating conditions), and pre and post-treatment can affect the transfer of solids and HMs and the main properties of bio-oil such as quality, yield, and HHV [394]. When a hyperaccumulator (contaminated biomass) that contains Ni was used, the composition of the bio-oil was changed, forming a greater amount of other compounds that contained N, such as triacetoneamine [507]. When this type of system processes contaminated biomass, great care must be taken with the coke produced in the solid phase as it concentrates a large part of the HMs [178]. Fast pyrolysis systems cannot use different types of catalysts in the same process because the catalysts themselves are deactivated. Other metals such as K, Mg, Na, and Ca that are stored in lignocellulosic-type biomass significantly affect pyrolysis processes because it modifies both the material structure and the different pyrolytic reaction pathways [512]. | |
Hydrothermal | The HTL process can be used to chemically extract as well as separate the HMs from the bio-oil obtained through pyrolysis when using biomass contaminated with HMs. Afterward, the solid residue obtained can be reused as fertilizer [394]. For a hyperaccumulator with a high humidity value, a highly efficient system is HTC. Elements such as Zn and Pb, in this type of process, tend to accumulate in more than 50% of solid waste, the remaining amount being converted into oxidizable compounds or more stable residual goods, therefore, at an environmental level, the ecotoxicity values were reduced almost entirely [507]. HTL is a process that allows the recovery (greater than 95%) of metals such as Cu and Cd in the residue obtained in the solid phase, despite the large amount of C that may still contain the resulting material. The HTL has a high potential to process microalgae and macroalgae used for the phytoremediation of polluted waters with HMs, allowing the storage of metals in the solid phase (compact and inert) to be later recovered, as well as the production of a liquid phase (bio-crude) with the proper characteristics for bioenergy. The HTL process allows for the breakdown of macronutrients such as P, N, and K in an aqueous-type medium to achieve extra nutrient recovery [510]. When applied to liquefaction in grass species developed in marginal soils, there are many advantages found in this type of system as they present a lower operating cost caused by the easy disaggregation of the material inside the reactor at lower temperatures [460]. | When compared to other thermochemical technologies (combustion, gasification, and pyrolysis) hydrothermal reactions need higher pressures. When applied to HTC the reduction of biomass from phytoremediation is lower than in other thermochemical technologies. When a hyper-accumulator containing Ni, Pb, and Zn is used as raw material, the metals are retained in the bio-oil, making it impossible to recover or isolate the HMs. Both HTC and HTL are technologies that can present blockages in the reactor’s internal system, increasing its operating costs [507]. | |
Biochemical conversion process | Anaerobic digestion | Arundo donax L. was evaluated in soils contaminated with several HMs, including Cu, Cd, and Zn. In the third year of planting, the giant reed managed to remove 2.09 kg ha−1 of Cu from the soil; 0.007 kg ha−1 of Cd, and 3.87 kg ha−1 of Zn. With these results, it is possible to guarantee the potential of this species for phytoextraction and later be applied in energy conversion processes such as anaerobic digestion and combustion [509]. | Anaerobic digestion (also including combustion) are the two technologies that pose the greatest risk of emitting metals to the environment without them being fully retained. When biomass contaminated with HMs is used, pollutants (metals) are released from other commercial products produced [510] in this type of system such as the compost used for agriculture. |
Composting | It reduces the organic matter present in the residual material from phytoremediation, accumulating the HMs in another fraction that can later be applied in anaerobic digestion. It is a technique used for many centuries, with low cost and with a closed carbon cycle because the carbon that is released has already been captured [506]. | Metals can be transferred naturally from the system by the microbial action itself, especially when it comes to Hg. A longer time for composting the material may be necessary, a factor that leads to the possible leaching of HMs contaminating the soil and groundwater [506]. | |
Fermentation | Many studies have confirmed the feasibility of using biomass when applied for phytoremediation in the fermentation of sugars for the formation of bioethanol. One of the main concerns of the enzymatic process (saccharification) is whether metals inhibit the process. However, metals such as Zn, Ni, and As do not inhibit the process [506] when compared to other metals. When studying 3 different types of pre-treatments such as alkaline (soda), organosolv, and acid to analyze biomass (willow wood) contaminated with HMs (Mn, Zn, and Fe) for the application of a fermentation process for the production of bioethanol, it was obtained that the best pre-treatment was acid (temperature of 170 °C and 2% w w−1 of H2SO4) as it allowed the efficient extraction of all metals being recovered in the residual water fluid forming a clean cellulosic pulp. In the enzymatic hydrolysis step, the 3 metals did not show any type of change in the hydrolysis of polysaccharides [373]. Sorghum bicolor L. Moench was evaluated in soil contaminated with different concentrations of Cd for bioethanol production. Sorghum proved to be an excellent candidate for bioenergy when soil Cd concentrations were less than 30 mg kg−1, with another positive aspect being the fact that Cd is mainly concentrated in the roots and not in the shoots, therefore, it does not affect the biomass used for bioenergy production [517]. The potential of Miscanthus × giganteus in soils contaminated with Mn, strontium (Sr), zirconium (Zr), Zn, As, Pb, Fe, titanium (Ti), and Cu for bioethanol production was analyzed. The high concentration of these metals in the soil, mainly from Mn, Zr, Fe, and Ti, did not impede the development of the species, with the concentration of these metals being higher in the roots and then in the aerial part (stems and leaves), a factor that is advantageous for being the aboveground fraction of interest for bioenergy. Ti, Cu, Sr, Fe, Mn, and Zn storage was lower in shoots and the accumulation of Pb, As and Zr was also almost null [518]. | In order to be able to produce bioethanol on a laboratory scale, a more rigorous control of the system is necessary, and the biomass (in some cases) must be subjected to several treatments to reduce the greatest amount of contaminants before the fermentation process. In the enzymatic process (saccharification), metals such as Pb are strong inhibitors, and Cd and Cu are considered to be moderately inhibitory [506]. Considering the study by Asad et al., 2017 [373] for the alkaline pre-treatment (soda) with the same temperature (170 °C) and 15% w w−1 of NaOH, a low extraction of HMs (Fe, Zn, and Mn being the recovery of metals in the same order), with the metals being mostly in the cellulosic pulp fraction, then in less proportion in the liquid waste fluid and finally, the lowest concentration was in lignin. For the case of organosolv pre-treatment, the recovery of metals in each fraction was followed in the same order as in the alkaline pre-treatment. | |
Chemical conversion | Oil transesterification | The use of biomass when applied for phytoremediation in the transesterification of oils for the formation of biodiesel has been shown to be viable in several studies [506]. | |
Post-treatment | Hot-gas filter | When contaminated biomass is used, there is an almost zero transfer of metals to the product of interest, which is bio-oil, being less than 1 mg kg−1 for Pb and Cd and less than 5 mg kg−1 for the Zn and Cu, all at a temperature of 350 °C. It can be said that the same results are obtained when uncontaminated (willow) biomass is used. There is a greater transfer of HMs to synthesis gas when using a hot gas filter than in the case of a cyclone [394]. | |
Cyclone | In contaminated biomass with HMs, the best conditions for the application of the cyclone in pyrolysis systems is at a temperature of 650 °C in order to simultaneously obtain the recovery of metals and a liquid product (bio-oil) without the presence of these. In a gasifier coupled to a cyclone and operating at a temperature between 500 °C and 600 °C, solid-phase recovery of metals such as Ni, Zn, Cu, and Pb is possible, with the sole exception of Cd [394]. | ||
Co-combustion | The application of co-combustion maintaining certain air conditions allows for the elimination of HMs. This can be seen in the following aspects:
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, M.; Silva, L.; Ribeiro, B.; Ferreira, A.; Alves, L.; Paixão, S.M.; Gouveia, L.; Moura, P.; Carvalheiro, F.; Duarte, L.C.; et al. Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies 2022, 15, 4348. https://doi.org/10.3390/en15124348
Abreu M, Silva L, Ribeiro B, Ferreira A, Alves L, Paixão SM, Gouveia L, Moura P, Carvalheiro F, Duarte LC, et al. Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies. 2022; 15(12):4348. https://doi.org/10.3390/en15124348
Chicago/Turabian StyleAbreu, Mariana, Luís Silva, Belina Ribeiro, Alice Ferreira, Luís Alves, Susana M. Paixão, Luísa Gouveia, Patrícia Moura, Florbela Carvalheiro, Luís C. Duarte, and et al. 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review" Energies 15, no. 12: 4348. https://doi.org/10.3390/en15124348
APA StyleAbreu, M., Silva, L., Ribeiro, B., Ferreira, A., Alves, L., Paixão, S. M., Gouveia, L., Moura, P., Carvalheiro, F., Duarte, L. C., Fernando, A. L., Reis, A., & Gírio, F. (2022). Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies, 15(12), 4348. https://doi.org/10.3390/en15124348