Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier
Abstract
:1. Introduction
2. Materials and Methods
2.1. HBF 2.0 Gasifier Concept
- The gasification zone (external cylinder) fluidized by steam.
- The combustion zone (internal cylinder) fluidized by air.
- i.
- The fast fluidized bed (combustor) at T∼1173 K and us = 5–10 umf.
- ii.
- The slow fluidized bed (gasifier) at T∼1073 K and us = 2–3 umf.
- The system compactness, which makes it suitable for small-scale applications (0.1–1 MW as biomass input), due to integration of both reaction chambers (gasification and combustion) in the same cylindrical body;
- The heat exchange between the two chambers occurs through bed material circulation and additionally by conduction/convection through the lateral wall of the internal cylinder;
- The higher temperature chamber (combustor), operating at 1173–1223 K, is thermally well insulated; this reduces the drawback of thermal losses in small scale applications;
- Longer residence time in the combustor (bubbling bed) improves the combustion efficiency of char particles.
2.2. Pilot Plant
3. Results and Discussion
3.1. Analysis of Materials
3.2. Gasification Tests
- The dry gas yield, ηgas, calculated as:
- The CGE % (Cold Gas Efficiency), calculated as:
- The carbon conversion, calculated as:
3.3. Gas Conditioning Systems
3.4. Mass and Energy Balances
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Superficial velocity (m/s) | |
Minimum fluidization velocity (m/s) | |
Gas yield (Nm3/kg) | |
Volumetric flow of dry syngas (Nm3/h) | |
Input biomass flow (kg/h) | |
Cold Gas Efficiency (%) | |
Syngas total volumetric flow (Nm3/h) | |
Syngas lower heating value (MJ/Nm3) | |
Biomass lower heating value (MJ/kg) | |
LPG mass flow (kg/h) | |
LPG lower heating value (MJ/kg) | |
Total moles of C in the input biomass (mol) | |
T | Average temperature (°C) |
References
- Nikoo, M.B.; Mahinpey, N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 2008, 32, 1245–1254. [Google Scholar] [CrossRef]
- Li, X.; Grace, J.; Lim, C.; Watkinson, A.; Chen, H.; Kim, J. Biomass gasification in a circulating fluidized bed. Biomass- Bioenergy 2004, 26, 171–193. [Google Scholar] [CrossRef]
- Hofbauer, H.; Rauch, R.; Loeffler, G.; Kaiser, S.; Fercher, E.; Tremmel, H. Six years experience with the FICFB-gasification process. In Proceedings of the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, The Netherlands, 17–21 June 2002. [Google Scholar]
- Igarashi, M.; Hayafune, Y.; Sugamiya, R.; Nakagawa, Y.; Makishima, K. Pyrolysis of Municipal Solid Waste in Japan. J. Energy Resour. Technol. 1984, 106, 377. [Google Scholar] [CrossRef]
- Van der Drift, A.; Van der Meijden, C.M.; Boerrigter, H. MILENA gasification technology for high efficient SNG production from biomass. In Proceedings of the 14th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Paris, France, 17–21 October 2005. [Google Scholar]
- Matsuoka, K.; Kuramoto, K.; Murakami, T.; Suzuki, Y. Steam Gasification of Woody Biomass in a Circulating Dual Bubbling Fluidized Bed System. Energy Fuels 2008, 22, 1980–1985. [Google Scholar] [CrossRef]
- Corella, J.; Toledo, A.J.M.; Molina, G. A Review on Dual Fluidized-Bed Biomass Gasifiers. Ind. Eng. Chem. Res. 2007, 46, 6831–6839. [Google Scholar] [CrossRef]
- Hofbauer, H.; Fercher, E.; Fleck, T.; Rauch, R.; Veronik, G. Two years experience with the FICFB-gasification process. In Proceedings of the 10th European Conference and Technology Exhibition on “Biomass for Energy And Industry”, Wurzburg, Germany, 8–11 June 1998. [Google Scholar]
- Kuramoto, M.; Kunii, D.; Furusawa, T. Flow of dense fluidized particles through an opening in a circulation system. Powder Technol. 1986, 47, 141–149. [Google Scholar] [CrossRef]
- Di Carlo, A.; Moroni, M.; Savuto, E.; Pallozzi, V.; Bocci, E.; Di Lillo, P. Cold model testing of an innovative dual bubbling fluidized bed steam gasifier. Chem. Eng. J. 2019, 377, 119689. [Google Scholar] [CrossRef]
- HBF High Performance Flexible Small Scale Biomass Gasifier 2.0. Project Funded by the Italian Ministry of Economic Development. 2017. Available online: https://www.hbf2-0.it/ (accessed on 20 May 2022).
- Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J. Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier. 2005. Available online: http://www.osti.gov/bridge (accessed on 20 May 2022).
- Larsson, A.; Kuba, M.; Vilches, T.B.; Seemann, M.; Hofbauer, H.; Thunman, H. Steam gasification of biomass—Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Process. Technol. 2021, 212, 106609. [Google Scholar] [CrossRef]
- Van Der Meijden, C.M.; Van Der Drift, A.; Vreugdenhil, B.J. Experimental results from the allothermal biomass gasifier Milena Experimental results from the allothermal biomass gasifier Milena Experimental Results From The Allothermal Biomass Gasifier Milena. In Proceedings of the 15th European Biomass Conference, Berlin, Germany, 7–11 May 2007; Available online: https://www.researchgate.net/publication/264092142 (accessed on 20 May 2022).
- Savuto, E.; Di Carlo, A.; Steele, A.; Heidenreich, S.; Gallucci, K.; Rapagnà, S. Syngas conditioning by ceramic filter candles filled with catalyst pellets and placed inside the freeboard of a fluidized bed steam gasifier. Fuel Process. Technol. 2019, 191, 44–53. [Google Scholar] [CrossRef]
- Abdoulmoumine, N.; Adhikari, S.; Kulkarni, A.; Chattanathan, S. A review on biomass gasification syngas cleanup. Appl. Energy 2015, 155, 294–307. [Google Scholar] [CrossRef]
- Cui, H.; Turn, S.Q.; Keffer, V.; Evans, D.; Tran, T.; Foley, M. Study on the fate of metal elements from biomass in a bench-scale fluidized bed gasifier. Fuel 2013, 108, 1–12. [Google Scholar] [CrossRef]
- Milne, T.A.; Evans, R.J.; Abatzoglou, N. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion; National Renewable Energy Laboratory: Golden, CO, USA, 1998. [Google Scholar] [CrossRef] [Green Version]
- Basu, P. Biomass Gasification and Pyrolysis; Elsevier Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar]
Ash (wt%db) | 1.2 |
Volatile matter (wt%db) | 75.5 |
Fixed Carbon (wt%db) | 23.2 |
C (wt%db) | 50.96 |
H (wt%db) | 5.72 |
N (wt%db) | 0.42 |
S (wt%db) | 0.03 |
O (wt%db) | 41.60 |
HHV (MJ/kg)db | 19.93 |
LHV (MJ/kg)db | 18.12 |
Characterization | Parameter | Ref. Method |
---|---|---|
Humidity | Amount of water in the as-received sample | UNI EN 14774-1 (ASTM E203) |
Proximate Analysis | Ash Content | UNI EN 14775-TAPPI Standard T 211 om-93 |
Volatile Matter (VM) Fixed Carbon (FC) | UNI EN 15148, mod. ASTM modif. D3175 | |
Ultimate Analysis | Elemental analysis (C, H, N, O) | UNI EN 15104 |
Sulphur (S), Chlorine (Cl) | UNI EN 15289 | |
Calorific value | Higher Heating Value (HHV) Lower Heating Value (LHV) | UNI EN 14918, ISO 1928 DIN 51900–TAPPI Test T684 |
Biomass feeding rate (kg/h) | 15 |
Steam—central (kg/h) | 10 |
Steam—lower orifice (kg/h) | 2.5 |
Steam—upper orifice (kg/h) | 1.5 |
Air combustor (kg/h) | 39 |
LPG combustor (L/min) | 10 |
gasifier (°C) | 810–846 |
combustor (°C) | 810–872 |
Duration (min) | 75 |
ηgas (Nm3/kg) | 1.33 ± 0.11 |
H2 (%vol dry) | 34.8 ± 1.0 |
CO (%vol dry) | 23.2 ± 1.2 |
CO2 (%vol dry) | 19.7 ± 1.2 |
CH4 (%vol dry) | 10.6 ± 0.7 |
N2 (%vol dry) | 7.3 ± 2.3 |
H2S (ppm dry) | 55–120 |
Tar content (g/Nm3) | 12.4 ± 6.0 |
LHV (MJ/Nm3) | 10.5 ± 0.4 |
CGE (%) | 65.8 ± 1.2 |
C conversion (%) | 72.8± 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Carlo, A.; Savuto, E.; Foscolo, P.U.; Papa, A.A.; Tacconi, A.; Del Zotto, L.; Aydin, B.; Bocci, E. Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier. Energies 2022, 15, 4369. https://doi.org/10.3390/en15124369
Di Carlo A, Savuto E, Foscolo PU, Papa AA, Tacconi A, Del Zotto L, Aydin B, Bocci E. Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier. Energies. 2022; 15(12):4369. https://doi.org/10.3390/en15124369
Chicago/Turabian StyleDi Carlo, Andrea, Elisa Savuto, Pier Ugo Foscolo, Alessandro Antonio Papa, Alessandra Tacconi, Luca Del Zotto, Bora Aydin, and Enrico Bocci. 2022. "Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier" Energies 15, no. 12: 4369. https://doi.org/10.3390/en15124369
APA StyleDi Carlo, A., Savuto, E., Foscolo, P. U., Papa, A. A., Tacconi, A., Del Zotto, L., Aydin, B., & Bocci, E. (2022). Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier. Energies, 15(12), 4369. https://doi.org/10.3390/en15124369