Magnéli TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Catalyst Synthesis and Electrode Preparation
2.2.1. Synthesis of Ti9O17
2.2.2. Synthesis of 30% Pt/Ti9O17
2.2.3. Electrode Preparation
Pt /Ti9O17 (30%) Electrode
Pt/C (20%) Electrode
2.3. Surface Characterizations
2.4. Electrochemical Measurements
2.5. Accelerated Stress Test (AST) via Start-Stop Cycles
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ning, F.; He, X.; Shen, Y.; Jin, H.; Li, Q.; Li, D.; Li, S.; Zhan, Y.; Du, Y.; Jiang, J.; et al. Flexible and Lightweight Fuel Cell with High Specific Power Density. ACS Nano 2017, 11, 5982–5991. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Peng, C.; Yin, C. Review of System Integration and Control of Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2020, 3, 466–505. [Google Scholar] [CrossRef]
- Scheepers, F.; Stähler, M.; Stähler, A.; Rauls, E.; Müller, M.; Carmo, M.; Lehnert, W. Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency. Appl. Energy 2021, 283, 116270. [Google Scholar] [CrossRef]
- Lochner, T.; Kluge, R.M.; Fichtner, J.; El-Sayed, H.A.; Garlyyev, B.; Bandarenka, A.S. Temperature Effects in Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem 2020, 7, 3545. [Google Scholar] [CrossRef]
- Firouzjaie, H.A.; Mustain, W.E. Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catal. 2020, 10, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels 2020, 4, 15–30. [Google Scholar] [CrossRef]
- Lee, W.; Bera, S.; Kim, C.M.; Koh, E.K.; Hong, W.P.; Oh, S.J.; Cho, E.A.; Kwon, S.H. Synthesis of highly dispersed Pt nanoparticles into carbon supports by fluidized bed reactor atomic layer deposition to boost PEMFC performance. NPG Asia Mater. 2020, 12, 40. [Google Scholar] [CrossRef]
- Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B Environ. 2009, 88, 1–24. [Google Scholar] [CrossRef]
- Kharwar, Y.P.; Akula, S.; Sahu, A.K.; Ramanujam, K. Highly Durable Pt-Based Catalyst Supported on Carbon Derived from Tamarind Seeds for Oxygen Reduction Reaction in PEM Fuel Cell. J. Electrochem. Soc. 2020, 167, 104515. [Google Scholar] [CrossRef]
- Hu, C.; Xiao, Y.; Zou, Y.; Dai, L. Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection. Electrochem. Energ. Rev. 2018, 1, 84–112. [Google Scholar] [CrossRef] [Green Version]
- Jha, N.; Reddy, A.L.M.; Shaijumon, M.M.; Rajalakshmi, N.; Ramaprabhu, S. Pt–Ru/multiwalled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int. J. Hydrogen Energy 2008, 33, 427–433. [Google Scholar] [CrossRef]
- Gribov, E.N.; Kuznetsov, A.N.; Golovin, V.A.; Krasnikov, D.V.; Kuznetsov, V.L. Effect of modification of multi-walled carbon nanotubes with nitrogen-containing polymers on the electrochemical performance of Pt/CNT catalysts in PEMFC. Mater. Renew. Sustain. Energy 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Karuppannan, M.; Kim, Y.; Gok, S.; Lee, E.; Hwang, J.Y.; Jang, J.H.; Cho, Y.H.; Lim, T.; Sung, Y.E.; Kwon, O.J. A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: Facile carbon encapsulation. Energy Environ. Sci. 2019, 12, 2820–2829. [Google Scholar] [CrossRef]
- Zang, J.; Wang, Y.; Bian, L.; Zhang, J.; Meng, F.; Zhao, Y.; Lu, R.; Qu, X.; Ren, S. Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electrooxidation. Carbon 2012, 50, 3032–3038. [Google Scholar] [CrossRef]
- Jafri, R.I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114–7117. [Google Scholar] [CrossRef]
- Ganyecz, Á.; Kállay, M. Oxygen Reduction Reaction on N-Doped Graphene: Effect of Positions and Scaling Relations of Adsorption Energies. J. Phys. Chem. C 2021, 125, 8551–8561. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chan, K.Y.; Ren, J.; Xiao, F.S. Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochim. Acta 2005, 50, 3131–3141. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Zhang, J.; Xu, H.; Tian, Z.; Chen, J.; Zhong, H.; Liang, Y.; Yi, B. Microporous layer with composite carbon black for PEM fuel cells. Electrochim. Acta 2006, 51, 49094915. [Google Scholar] [CrossRef]
- Wang, Y.; Lia, J.; Wei, Z. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8194–8209. [Google Scholar] [CrossRef]
- Liu, Y.; Kelly, T.G.; Chen, J.G.; Mustain, W.E. Metal Carbides as Alternative Electrocatalyst Supports. ACS Catal. 2013, 3, 1184–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, Q.; Wang, H.; Wilkinson, D.P.; Zhang, J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochem. Energ. Rev. 2019, 2, 518–538. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Wilkinson, P.D.; Zhang, J. Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chem. Rev. 2011, 111, 7625–7651. [Google Scholar] [CrossRef]
- Huang, S.H.; Ganesan, P.; Park, S.; Popov, B.N. Development of a Titanium DioxideSupported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. J. Am. Chem. Soc. 2009, 131, 13898–13899. [Google Scholar] [CrossRef]
- Duma, A.D.; Wu, Y.C.; Su, W.N.; Pan, C.J.; Tsai, M.C.; Chen, H.M.; Lee, J.F.; Sheu, H.S.; Ho, V.T.T.; Hwang, B.J. In Situ Confined Synthesis of Ti4O7 Supported Platinum Electrocatalysts with Enhanced Activity and Stability for the Oxygen Reduction Reaction. ChemCatChem 2018, 10, 1155. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Gao, Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566. [Google Scholar] [CrossRef]
- Stevens, D.A.; Hicks, M.T.; Haugen, G.M.; Dahn, J.R. Ex Situ and In Situ Stability Studies of PEMFC Catalysts: Effect of Carbon Type and Humidification on Degradation of the Carbon. J. Electrochem. Soc. 2005, 152, A2309. [Google Scholar] [CrossRef]
- Arif, A.F.; Balgis, R.; Ogi, T.; Iskandar, F.; Kinoshita, A.; Nakamura, K.; Okuyama, K. Highly conductive nano-sized Magnéli phases titanium oxide (TiOx). Sci. Rep. 2017, 7, 3646. [Google Scholar] [CrossRef] [Green Version]
- Masud, J.; Thakare, J.; Aulich, T.; Mann, M.; Zhao, J.X. Magnéli Phase Ti9O17− Catalyst Support Materials for ORR. In ECS Meeting Abstracts; MA2020-02 2849; IOP Publishing: Bristol, UK, 2000. [Google Scholar]
- Stariha, S.; Macauley, N.; Sneed, B.T.; Langlois, D.; More, K.L.; Mukundan, R.; Borup, R.L. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. J. Electrochem. Soc. 2018, 165, F492. [Google Scholar] [CrossRef]
- Ishida, Y.; Doshin, W.; Tsukamoto, H.; Yonezawa, T. Black TiO2 Nanoparticles by a Microwave-induced Plasma over Titanium Complex Aqueous Solution. Chem. Lett. 2015, 44, 1327–1329. [Google Scholar] [CrossRef]
- Masud, J.; Nguyen, T.V.; Singh, N.; McFarland, E.; Ikenberry, M.; Hohn, K.; Pan, C.J.; Hwang, B.J. A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr. J. Electrochem. Soc. 2015, 162, F455–F462. [Google Scholar] [CrossRef] [Green Version]
- Masud, J.; Nath, M. Co7Se8 Nanostructures as Catalysts for Oxygen Reduction Reaction with High Methanol Tolerance. ACS Energy Lett. 2016, 1, 27–31. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakare, J.; Masud, J. Magnéli TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts. Energies 2022, 15, 4437. https://doi.org/10.3390/en15124437
Thakare J, Masud J. Magnéli TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts. Energies. 2022; 15(12):4437. https://doi.org/10.3390/en15124437
Chicago/Turabian StyleThakare, Jivan, and Jahangir Masud. 2022. "Magnéli TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts" Energies 15, no. 12: 4437. https://doi.org/10.3390/en15124437
APA StyleThakare, J., & Masud, J. (2022). Magnéli TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts. Energies, 15(12), 4437. https://doi.org/10.3390/en15124437