Voltage Improvement of a Swing-Magnet-Type Generator for Harvesting Bicycle Vibrations
Abstract
:1. Introduction
2. Proposal for a Swing-Magnet-Type Generator
2.1. Bicycle Vibration Characteristics
2.2. Structure of the Swing-Magnet-Type Generator
2.3. Characteristic of the Swing-Magnet-Type Generator
3. Swing Characteristics of the Mover
3.1. Equation of Motion of the Mover
3.2. Swinging Moment of the Mover
3.3. Resonance Frequency of the Swing of the Mover
3.4. Vibration Experiment Using a Linear Motor
4. Output Voltage Characteristics of the Generator
4.1. Relationship between the Yoke and Flux Linkage
4.2. Bicycle Motion Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pan, H.; Qi, L.; Zhang, Z.; Yan, J. Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review. Appl. Energy 2001, 57, 477–484. [Google Scholar] [CrossRef]
- Amjadian, M.; Agrawal, A.K.; Nassif, H.H. Development of An Analytical Method for Design of Electromagnetic Energy Harvesters with Planar Magnetic Arrays. Energies 2022, 15, 3540. [Google Scholar] [CrossRef]
- Sezer, N.; Koc, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Kecik, K.; Kowalczuk, M. Effect of Nonlinear Electromechanical Coupling in Magnetic Levitation Energy Harvester. Energies 2021, 14, 2715. [Google Scholar] [CrossRef]
- Xie, L.; Song, W.; Ge, J.; Tang, B.; Zhang, X.; Wu, T.; Ge, Z. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 2021, 82, 105770. [Google Scholar] [CrossRef]
- An, X.; Wang, C.; Shao, R.; Sun, S. Advances and prospects of triboelectric nanogenerator for self-powered system. Int. J. Smart Nano Mater. 2021, 12, 233–255. [Google Scholar] [CrossRef]
- Iqbal, M.; Nauman, M.M.; Khan, F.U.; Abas, P.E.; Cheok, Q.; Iqbal, A.; Aissa, B. Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: A contributed review. Int. J. Energy Res. 2021, 45, 65–102. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy Harvesting towards Self-Powered IoT Devices. Energies 2020, 13, 5528. [Google Scholar] [CrossRef]
- Politi, B.; Foucaran, A.; Camara, N. Low-Cost Sensors for Indoor PV Energy Harvesting Estimation Based on Machine Learning. Energies 2022, 15, 1144. [Google Scholar] [CrossRef]
- Ueno, T. Magnetostrictive vibrational power generator for battery-free IoT application. AIP Adv. 2019, 9, 035018. [Google Scholar] [CrossRef] [Green Version]
- Ichige, R.; Kuriyama, N.; Umino, Y.; Tsukamoto, T.; Suzuki, T. Size optimization of metamaterial structure for elastic layer of a piezoelectric vibration energy harvester. Sens. Actuators A Phys. 2021, 318, 112488. [Google Scholar] [CrossRef]
- Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y.C.; Dickey, M.D. Energy Harvesting and Storage with Soft and Stretchable Materials. Adv. Mater. 2021, 33, 2004832. [Google Scholar] [CrossRef] [PubMed]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Matiko, J.W.; Grabham, N.J.; Beeby, S.P.; Tudor, M.J. Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 2014, 25, 012002. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Choi, J.; Jung, I.; Kang, C.Y. A brief review of sound energy harvesting. Nano Energy 2019, 56, 169–183. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; Younesian, D.; Eghbali, P.; Moayedizadeh, A.; Fassih, A. Sound and vibration energy harvesting for railway applications: A review on linear and nonlinear techniques. Energy Rep. 2021, 7, 852–874. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Liu, Z. A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation. J. Sound Vib. 2018, 417, 260–276. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.A.; Xu, L.; Ali, M.K.A.; Elagouz, A.; Mi, J.; Guo, S.; Liu, Y.; Zuo, L. Vibration energy harvesting in automotive suspension system: A detailed review. Appl. Energy 2018, 229, 672–699. [Google Scholar] [CrossRef]
- Doria, A.; Marconi, E.; Moro, F. Energy Harvesting from Bicycle Vibrations. IEEE Trans. Ind. Appl. 2021, 57, 6417–6425. [Google Scholar] [CrossRef]
- Prajwal, K.T.; Manickavasagam, K.; Suresh, R. A review on vibration energy harvesting technologies: Analysis and technologies. Eur. Phys. J. Spec. Top. 2022. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, J.; Zhou, S.; Ji, H.; Chen, Y.; Li, S. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 2018, 231, 600–614. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Mikio, D.; Padilla, R.V. A Single-Stage Rectifier-Less Boost Converter Circuit for Piezoelectric Energy Harvesting Systems. IEEE Trans. Energy Convers. 2022, 37, 505–514. [Google Scholar] [CrossRef]
- Doria, A.; Marconi, E.; Moro, F. Energy Harvesting from Bicycle Vibrations by Means of Tuned Piezoelectric Generators. Electronics 2020, 9, 1377. [Google Scholar] [CrossRef]
- Zhang, Y.; Bowen, C.R.; Ghosh, S.K.; Mandal, D.; Khanbareh, H.; Arafa, M.; Wan, C. Ferroelectret materials and devices for energy harvesting applications. Nano Energy 2019, 57, 118–140. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, G.; Gao, Y.; Bu, T.; Zhang, X.; Xu, C.; Lin, Y.; Zhang, C. Frequency Band Characteristics of a Triboelectric Nanogenerator and Ultra-Wide-Band Vibrational Energy Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 26084–26092. [Google Scholar] [CrossRef]
- Yang, Y.; Yeo, J.; Priya, S. Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding. Sensors 2012, 12, 10248–10258. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Jantunen, H.; Juuti, J. Energy Harvesting Research: The Road from Single Source to Multisource. Adv. Mater. 2018, 30, 1707271. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.N.; Cheng, H.L.; Chan, S.Y.; Huang, L.H. Energy Harvesting Research: Electromagnetic Energy Harvester and Energy Storage System for Bike Lighting Applications. Sens. Mater. 2018, 30, 1341–1347. [Google Scholar]
- Puig-Diví, A.; Escalona-Marfil, C.; Padullés-Riu, J.M.; Busquets, A.; Padullés-Chando, X.; Daniel, M.R. Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PLoS ONE 2019, 14, e0216448. [Google Scholar] [CrossRef]
- González, P.F.; Aikaterini, K.; Alicia, C.G.; María, C.T.; Carlos, M.P.J.; Francisco, M.R. Reliability of Kinovea® Software and Agreement with a Three-Dimensional Motion System for Gait Analysis in Healthy Subjects. Sensors 2020, 20, 3154. [Google Scholar] [CrossRef]
- Wang, L.; Whiting, E. Buoyancy Optimization for Computational Fabrication. Eurographics 2016, 35, 49–58. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Grace, I.M. Modeling of Ship Roll Dynamics and Its Coupling with Heave and Pitch. Math. Probl. Eng. 2010, 2010, 934714. [Google Scholar] [CrossRef] [Green Version]
- Kianejad, S.; Enshaei, H.; Duffy, J.; Ansarifard, N. Calculation of ship roll hydrodynamic coefficients in regular beam waves. Ocean. Eng. 2020, 203, 107225. [Google Scholar] [CrossRef]
- Gowthaman, D.; Balagnesan, P.; Rajendran, L. Mathematical Modeling of Roll Motion of Ships: New Approach of Homotopy Perturbation Method. Int. J. Sci. Technol. Res. 2019, 8, 2539–2545. [Google Scholar]
- Seth, A.; Kuruvilla, J.K.; Sharma, S.; Duttagupta, J.; Jaiswal, A. Design and simulation of 6-DOF cylindrical robotic manipulator using finite element analysis. Mater. Today Proc. 2022, 62, 1521–1525. [Google Scholar] [CrossRef]
- Vardaan, K.; Kumar, P. Design, analysis, and optimization of thresher machine flywheel using Solidworks simulation. Mater. Today Proc. 2022, 56, 3651–3655. [Google Scholar] [CrossRef]
- Teixeira, P.R.F.; Davyt, D.P.; Didier, E.; Ramalhais, R. Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations. Energy 2013, 61, 513–530. [Google Scholar] [CrossRef]
Item | Contents |
---|---|
Software | SolidWorks Ver. 2018 |
Analysis method | Mass characteristic calculation |
Material density | Permanent magnet (ρ = 7.5 g/cm3), Yoke (ρ = 7.87 g/cm3), Floating (ρ = 0.15 g/cm3), Liquid (ρ = 1 g/cm3) |
Item | Contents |
---|---|
Software | JMAG-Designer (x64) Ver. 19.1 |
Analysis method | Three-dimensional magnetic field transient response analysis (FEM) |
Mesh size | Mover: 0.5 mm, Coil: 0.5 mm, Air: Auto |
Time interval | 4 ms |
Step number | 21 |
Material | Permanent magnet: (Arnold: N35), Yoke: (JSOL: SPCC), Air: (μr = 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, M.; Takemura, T.; Mizuno, T. Voltage Improvement of a Swing-Magnet-Type Generator for Harvesting Bicycle Vibrations. Energies 2022, 15, 4630. https://doi.org/10.3390/en15134630
Sato M, Takemura T, Mizuno T. Voltage Improvement of a Swing-Magnet-Type Generator for Harvesting Bicycle Vibrations. Energies. 2022; 15(13):4630. https://doi.org/10.3390/en15134630
Chicago/Turabian StyleSato, Mitsuhide, Takuto Takemura, and Tsutomu Mizuno. 2022. "Voltage Improvement of a Swing-Magnet-Type Generator for Harvesting Bicycle Vibrations" Energies 15, no. 13: 4630. https://doi.org/10.3390/en15134630
APA StyleSato, M., Takemura, T., & Mizuno, T. (2022). Voltage Improvement of a Swing-Magnet-Type Generator for Harvesting Bicycle Vibrations. Energies, 15(13), 4630. https://doi.org/10.3390/en15134630