Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods
Abstract
:1. Introduction
2. The Method of Determination of Effective Geomechanical Parameters for Technological and Residual Pillars for Numerical Modeling Using Back-Calculation Based on the Results of Numerical Simulations, Measurement Data, and Statistical Methods
- Y—explained variable (results of in-situ measurements of convergence for a chosen excavation),
- Z1, …, Zk—so-called “dummy” variables (with a value of 1 or 0),
- P1, …, Pk—quadratic functions acting as parameters of a regression model with “dummy” variables.
- −
- for two parameters (e.g., E, c):
- −
- for three parameters (e.g., E1, E2, c):
3. Case Study in Polkowice-Sieroszowice Mine
3.1. Characteristics of Research Area
3.2. Characteristics of Numerical Modeling
3.3. Determination of Parameters for Rocks and Rock Mass
3.4. Determination of Effective Geomechanical Parameters for Technological and Residual Pillars by Numerical Modeling Using Back-Calculation Based on the Results of Numerical Simulations, Measurement Data and Statistical Methods
E1 | E2 | E3 |
2000 MPa | 500 MPa | 100 MPa |
6000 MPa | 1500 MPa | 150 MPa |
10,000 MPa | 2500 MPa | 200 MPa |
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jing, L.; Hudson, J.A. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Jing, L. A review of technics, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Beer, G.; Pousen, A. Efficient numerical modelling of faulted rock using the boundary element method. Int. J. Rock Mech. Min. Sci. 1995, 32, 117A. [Google Scholar] [CrossRef]
- Kayupov, M.A.; Kuriyagawa, M. DDM modelling of narrow excavations and/or cracks in anisotropic rock mass. In Proceedings of the ISRM International Symposium-EUROCK 96, Torino, Italy, 2–5 September 1996; Balkema: Rotterdam, The Netherlands, 1996; pp. 351–358. [Google Scholar]
- Cerrolaza, M.; Garcia, R. Boundary elements and damage mechanics to analyze excavations in rock mass. Eng. Anal. Boundary Elements 1997, 20, 1–16. [Google Scholar] [CrossRef]
- Pan, E.; Amadei, B.; Kim, Y.I. 2D BEM analysis of anisotropic half- plane problems—Application to rock mechanics. Int. J. Rock Mech. Min. Sci. 1998, 35, 69–74. [Google Scholar] [CrossRef]
- Shou, K.J. A three-dimensional hybrid boundary element method for non-linear analysis of a weak plane near an underground excavation. Tunn. Undergr. Sp. Technol. 2000, 16, 215–226. [Google Scholar] [CrossRef]
- Mark, C.; Molinda, G.; Dolinar, D. Analysis of roof bolt stability. In Proceedings of the 20th International Conference on Ground Control in Mining, Morgantown, WV, USA, 7–9 August 2001; Peng, S.S., Mark, C., Khair, A.W., Eds.; West Virginia University: Morgantown, WV, USA, 2001; pp. 218–225. [Google Scholar]
- Pawelus, D. Evaluation of corridor excavation stability in the area of R-XI shaft using elastic-plastic model of rock formation and Coulomb- Mohr criterion. “Cuprum” Sci. Tech. Pap. Ore Min. 2013, 4, 21–40. [Google Scholar]
- Adach-Pawelus, K.; Pawelus, D. Influence of driving direction on the stability of a group of headings located in a field of high horizontal stresses in the Polish underground copper mines. Energies 2021, 14, 5955. [Google Scholar] [CrossRef]
- Yassien, A.M.; Zhang, Y.; Han, J.; Peng, S.S. Comparison of Some Aspects of Bolting Mechanisms between Fully-Grouted Resin and Tensioned Bolts in Underground Mine Entries. In Proceedings of the 21st International Conference on Ground Control in Mining, Morgantown, WV, USA, 6–8 August 2002; Peng, S.S., Mark, C., Khair, A.W., Heasley, K.A., Eds.; West Virginia University: Morgantown, WV, USA, 2002; pp. 114–125. [Google Scholar]
- Ghanmi, A.; Planeta, S.; Djelloud, J. Numerical modelling of mining sequences for steep orebodies. In Mine Planning and Equipment Selection; Balkema: Rotterdam, The Netherlands, 1998; pp. 53–57. [Google Scholar]
- Board, M.; Brummer, R.; Seldon, S. Use of Numerical Modelling for Mine Design and Evaluation. In Underground Mining Methods: Engineering Fundamentals and International Case Studies; Society for Mining, Metallurgy and Exploration: Englewood, CO, USA, 2001; pp. 483–492. [Google Scholar]
- Yasitli, N.E.; Unver, B. 3D numerical modelling of longwall mining with top-coal caving. Int. J. Rock. Mech. Min. Sci. 2005, 42, 219–235. [Google Scholar] [CrossRef]
- Peng, S. Coal Mine Ground Control, 3rd ed.; Society for Mining Metallurgy: Englewood, CO, USA, 2008. [Google Scholar]
- Villegas, T.; Nordlund, E. Numerical Analysis of the Hangingwall Failure at the Kiirunavaara Mine. In Proceedings of the InInternational Conference & Exhibition on Mass Mining, Luleå, Sweden, 9–11 June 2008; Schunnesson, H., Nordlund, E., Eds.; Luleå Tekniska Universitet: Luleå, Sweden, 2008. [Google Scholar]
- Blachowski, J.; Ellefmo, S. Numerical Modelling of Rock Mass Deformation in Sublevel Caving Mining System. Acta Geodyn. Geomater. 2012, 9, 379–388. [Google Scholar]
- Shabanimashcool, M.; Li, C.C. Numerical modelling of longwall mining and stability analysis of the gates in a coal seam. Int. J. Rock. Mech. Min. Sci. 2012, 51, 24–34. [Google Scholar] [CrossRef]
- Suchowerska, A.M.; Merifield, R.S.; Carter, J.P. Vertical stress changes in multiseam mining under supercritical longwall panels. Int. J. Rock. Mech. Min. Sci. 2013, 61, 306–320. [Google Scholar] [CrossRef]
- Lafont, G.; Gunzburger, Y.; Mitri, H.S.; Al Heib, M.; Didier, C.; Piguet, J.P. Influence of mining excavation on energy redistribution and rockburst potential. In Proceedings of the 23 World Mining Congress, Montreal, QC, Canada, 11 August 2013. [Google Scholar]
- Ozbay, M.U.; Ryder, J.A. The effect of foundation damage on the performance of stabilizing pillars. J. S. Afr. Inst. Min. Metall. 1990, 90, 29–35. [Google Scholar]
- Kaiser, P.K.; Tang, C.A. Numerical simulation of damage accumulation and seismic energy release during brittle rock failure part II: Rib pillar collapse. Int. J. Rock. Mech. Min. Sci. 1998, 35, 123–134. [Google Scholar] [CrossRef]
- York, G. Numerical modelling of the yielding of a stabilizing pillar/foundation system and a new design consideration for stabilizing pillar foundations. J. S. Afr. Inst. Min. Metall. 1998, 98, 281–297. [Google Scholar]
- Vieira, F.M.C.C.; Dede, T.; Maccelari, M.J.; Spottiswoode, S.M. Stabilizing and bracket pillar design to reduce seismicity. J. S. Afr. Inst. Min. Metall. 1998, 98, 11–17. [Google Scholar]
- Yavuz, H. Yielding Pillar Concept and its Design. In Proceedings of the 17th International Mining Congress and Exhibition of Turkey–IMCET, Antalya, Turkey, 19–22 June 2001. [Google Scholar]
- Watson, B.P.; Roberts, M.K.C.; Nkwana, M.M.; Kuijpers, J.; van Aswegen, L. The stress-strain behaviour of in-slope pillars in the Bushveld Platinum deposits in South Africa. J. S. Afr. Inst. Min. Metall. 2007, 107, 187–194. [Google Scholar]
- Jia, P.; Zhu, W.-c. Dynamic−static coupling analysis on rockburst mechanism in jointed rock mass. J. Cent. South Univ. 2012, 19, 3285–3290. [Google Scholar] [CrossRef]
- Adach, K. Impact of the Size of Remnants on Seismic and Rockburst Hazard in LGOM Mines. Ph.D. Dissertation, Wroclaw University of Science and Technology, Wroclaw, Poland, 2015. (In Polish). [Google Scholar]
- Adach-Pawelus, K.; Pawelus, D. Application of hydraulic backfill for rockburst prevention in the mining field with remnant in the Polish underground copper mines. Energies 2021, 14, 3869. [Google Scholar] [CrossRef]
- Rybak, J.; Khayrutdinov, M.; Kuziev, D.; Kongar-Syuryun, C.B.; Babyr, V.N. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. J. Min. Inst. 2022, 253, 61–70. [Google Scholar] [CrossRef]
- Tang, C. Numerical Simulation of Progressive Failure and Associated Seismicity. Int. J. Rock. Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Wiles, T.D.; Lachenicht, R.; van Aswegen, G. Integration of deterministic modelling with seismic monitoring for the assessment of rockmass response to mining: Part I Theory. In Proceedings of the Fifth Intermational Symposium on Rockburst and Seismicity in Mines, Johannesburg, South Africa, 17–19 September 2001; pp. 379–387. [Google Scholar]
- Zhu, W.C.; Li, Z.H.; Zhu, L.; Tang, C.A. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance. Tunn. Undergr. Sp. Technol. 2010, 25, 587–599. [Google Scholar] [CrossRef]
- Adach-Pawelus, K.; Butra, J.; Pawelus, D. An attempt at evaluation of the remnant influence on the occurrence of seismic phenomena in a room-and-pillar mining system with roof deflection. Studia Geotech. Mech. 2017, 39, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Adach-Pawelus, K. Application of seismic monitoring and numerical modelling in the assessment of the possibility of seismic event occurrence in the vicinity of ore remnant. In IOP Conference Series—Earth & Environmental Science, Proceedings of the World Multidisciplinary Earth Sciences Symposium, Prague, Czech Republic, 3–7 September 2018; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 221, pp. 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Masoumi, H.; Oh, J.; Zhang, S. Scale-Size and Structural Effects of Rock Materials; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar]
- Kashfia, M.; Shada, S.; Zivarba, D. Evaluation of sample scale effect on geomechanical tests. Pet. Res. 2022. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock. Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P. GSI: A geologically friendly tool for rock mass strength estimation. Presented at the ISRM International Symposium, Melbourne, Australia, 19–24 November 2000. [Google Scholar]
- Hoek, E.; Carranza-Torres, C.T.; Corkum, B. Hoek-Brown failure criterion—2002 edition. In Proceedings of the North American Rock Mechanics Society Meeting in Toronto, Toronto, ON, Canada, 7–10 July 2002. [Google Scholar]
- Sakurai, S. Direct strain evaluation technique in construction of underground openings. In Proceedings of the 22nd US Symposium on Rock Mechanics, Cambridge, MA, USA, 29 June–2 July 1981; MIT Press: Cambridge, MA, USA, 1981; pp. 278–282. [Google Scholar]
- Catalogue of Copper Deposit Mining Systems in KGHM Polska Miedz SA Mines; KGHM Polska Miedz SA Mines: Lubin, Poland, 2007. (In Polish)
- RocScience Phase2 Finite Element Analysis for Excavations and Slopes v. 8.0 Documentation; RocScience Inc.: Toronto, ON, Canada, 2015.
Location | Name of Rock | h [m] | ρ [kg/dm3] | Rc [MPa] | Rr [MPa] | Es [MPa] | v [-] |
---|---|---|---|---|---|---|---|
ROOF | Main anhydrite | 100.0 | 2.90 | 93.1 | 6.4 | 56,100 | 0.24 |
Loamy anhydrite breccia | 10.0 | 2.25 | 36.0 | 1.7 | 13,650 | 0.18 | |
Basic anhydrite | 73.0 | 2.90 | 95.5 | 5.5 | 54,600 | 0.25 | |
Calcareous dolomite I | 15.0 | 2.53 | 132.5 | 8.3 | 51,090 | 0.24 | |
Calcareous dolomite II | 2.0 | 2.74 | 213.0 | 16.0 | 99,320 | 0.27 | |
MINED DEPOSIT | Mined deposit | 2.7 | 2.63 | 110.9 | 7.4 | 34,450 | 0.21 |
BOTTOM | Quartz sandstone I | 8.2 | 2.12 | 22.1 | 1.4 | 8190 | 0.15 |
Quartz sandstone II | 194.5 | 1.95 | 16.7 | 0.7 | 6190 | 0.13 |
Location | Name of Rock | h [m] | Es [MPa] | v [-] | σt [MPa] | c [MPa] | φ [°] |
---|---|---|---|---|---|---|---|
ROOF | Main anhydrite | 100.0 | 41,110 | 0.24 | 0.746 | 6.967 | 38.66 |
Loamy anhydrite breccia | 10.0 | 7100 | 0.18 | 0.093 | 2.507 | 39.06 | |
Basic anhydrite | 73.0 | 40,010 | 0.25 | 0.765 | 7.146 | 38.66 | |
Calcareous dolomite I | 15.0 | 44,980 | 0.24 | 2.933 | 12.085 | 39.00 | |
Calcareous dolomite II | 2.0 | 87,440 | 0.27 | 4.715 | 19.895 | 39.00 | |
MINED DEPOSIT | Mined deposit | 2.7 | 25,240 | 0.21 | 0.825 | 8.424 | 39.31 |
BOTTOM | Quartz sandstone I | 8.2 | 4260 | 0.15 | 0.057 | 1.538 | 39.06 |
Quartz sandstone II | 194.5 | 3220 | 0.13 | 0.043 | 1.160 | 39.06 |
Parameter | Estimation | p | Lower Confidence Limit | Upper Confidence Limit |
---|---|---|---|---|
E2 | 725.066 | 0.739776 | −4582.5 | 6032.6 |
a | 5541.145 | 0.893210 | −95,323.3 | 106,405.6 |
E3 | 135.808 | 0.000182 | 122.6 | 209.0 |
Parameter | Estimation | p | Lower Confidence Limit | Upper Confidence Limit |
---|---|---|---|---|
E2 | 136.931 | 0.0000000000119 | 122.134 | 151.729 |
a | 174.424 | 0.0000162422638 | 238.441 | 391.832 |
Parameter | Estimation | p | Lower Confidence Limit | Upper Confidence Limit |
---|---|---|---|---|
E1 | 311.355 | 0.0000364562557 | 198.823 | 423.887 |
E2 | 136.931 | 0.0000000000119 | 122.134 | 151.729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adach-Pawelus, K. Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods. Energies 2022, 15, 4729. https://doi.org/10.3390/en15134729
Adach-Pawelus K. Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods. Energies. 2022; 15(13):4729. https://doi.org/10.3390/en15134729
Chicago/Turabian StyleAdach-Pawelus, Karolina. 2022. "Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods" Energies 15, no. 13: 4729. https://doi.org/10.3390/en15134729
APA StyleAdach-Pawelus, K. (2022). Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods. Energies, 15(13), 4729. https://doi.org/10.3390/en15134729