Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine
Abstract
:1. Introduction
2. Literature Analysis on the Effect of Intake System Pressure Drop on Engine Performance and Exhaust Emission Change
3. Experimental Studies on the Influence of Air Filter Pressure Drop on the Performance of the Diesel Engine
3.1. Purpose and Focus of the Study
3.2. Test Methodology and Conditions
- engine torque, Mo [Nm],
- engine rotational speed, n [rpm],
- hourly fuel consumption, Ge [kg/h],
- engine air demand, Qs [m3/h],
- exhaust gas temperature, ts [°C],
- exhaust gas opacity—light absorption coefficient, k [m−1],
- air pressure before p1 and after air filter p2, [kPa],
- charge air pressure, pd, [kPa],
- exhaust gas components: NO, NO2, N2O, SO2, CO, CO2, O2, H2O.
- effective engine power, Ne [kW],
- specific fuel consumption, ge [g/(kWh)],
- air filter pressure drop Δpf [kPa].
- emission of individual exhaust components: NO, NO2, N2O, SO2, CO, CO2, O2, H2O,
- relative change in emission of exhaust gas components.
3.3. Analysis of Research Results
- technical condition ″New″—filter with clean, brand new, paper air filter cartridge, Δpf = 0.580 kPa,
- technical condition A-33—air filter with an air filter insert that has had approx. 33% of its active filtration area obscured, Δpf = 0.604 kPa,
- technical condition B-66—air filter with a filter insert, which is obscured by approx. 66% of the active filtering surface, Δpf = 0.757 kPa,
- technical condition C-90—air filter with a filter insert, which has approx. 90% of its active filtering surface obscured, Δpf = 2.024 kPa.
4. Conclusions
- In the available literature there are no results of research on the influence of the inlet system flow resistance on the emission of toxic components of exhaust gases from a modern Diesel engine used for driving trucks (truck tractors) currently travelling on the roads and constituting the basic means of transporting goods.
- The conducted research has shown that the increase in flow resistance in the inlet system of the modern ZS truck engine has no significant effect on the NOx emission into the atmosphere, and does not cause any significant changes in the degree of smoke opacity of exhaust gases in relation to its acceptable value specified in the technical conditions for this type of vehicle.
- The observed effect of the increase in air filter flow resistance of the modern ZS truck engine is a decrease in air demand by the engine, decrease in the boost pressure and, as a result, the decrease in the filling ratio ηυ which, in connection with the fuel dose reduction, causes the decrease in the engine power. An increase in air filter flow resistance by an average of 1 kPa results in a decrease in engine power of over 6%. In the conditions of vehicle use, this is associated with a reduction in the ability to climb a hill in individual gears and an increase in the time and distance of acceleration of the vehicle-tractor-trailer combination. As the flow resistance increases, the emissions of exhaust components change: NO, NO2, NOx, CO, HC and CO2. These values are so small that they do not significantly affect the ecological properties of the tested engine.
- The results obtained show the effect of the air filter flow resistance of a modern truck engine on its performance, and in particular on the changes in the emission of the individual components of exhaust gases. It is advisable to continue the work; the final effect of which should be a determination of the maximum permissible flow resistance, the exceeding of which should eliminate the vehicle from further operation because of deterioration of the economic, energetic, ecological and traction properties of the vehicle.
- It is advisable to extend the presented research with the analysis of the influence of increased flow resistance in the air filtration system on the change of traction properties of the vehicle equipped with this type of inlet system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Appl. Energy 2018, 225, 965–974. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Nik-Ghazali, N.-N.; Abul Kalam, M.; Badruddin, I.A.; Banapurmath, N.R.; Akram, N. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers. Manag. 2018, 178, 146–177. [Google Scholar] [CrossRef]
- Chłopek, Z.; Lasocki, J.; Strzałkowska, K.; Zakrzewska, D. Impact of pollutant emission from motor vehicles on air quality in a city agglomeration. Combust. Engines 2019, 177, 7–11. [Google Scholar] [CrossRef]
- Kuppili, S.K.; Dheeraj Alshetty, V.; Diya, M.; Shiva Nagendra, S.M.; Ramadurai, G.; Ramesh, A.; De Vito, L. Characteristics of real-world gaseous exhaust emissions from cars in heterogeneous traffic conditions. Transp. Res. Part D Transp. Environ. 2021, 95, 102855. [Google Scholar] [CrossRef]
- Lal, S.; Patil, R.S. Monitoring of atmospheric behaviour of nox from vehicular traffic. Environ. Monit. Assess. 2001, 68, 37–50. [Google Scholar] [CrossRef]
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Rokosch, U. Układy Oczyszczania Spalin i Pokładowe Systemy Diagnostyczne Samochodów OBD; WKŁ: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Merkisz, J. Ekologiczne Problemy Silników Spalinowych, T.1. Wydawnictwo Politechniki Poznańskiej; Poznań University of Technology: Poznan, Poland, 1998. (In Polish) [Google Scholar]
- Worek, J.; Badura, X.; Białas, A.; Chwiej, J.; Kawoń, K.; Styszko, K. Pollution from Transport: Detection of Tyre Particles in Environmental Samples. Energies 2022, 15, 2816. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Panko, J.; Hitchcock, K.; Fuller, G.; Green, D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Bänsch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Prenner, S.; Allesch, A.; Staudner, M.; Rexeis, M.; Schwingshackl, M.; Huber-Humer, M. Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres. Environ. Pollut. 2021, 290, 118102. [Google Scholar] [CrossRef]
- Leifheit, E.F.; Kissener, H.L.; Faltin, E.; Ryo, M.; Rillig, M.C. Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling. Soil Ecol. Lett. 2021. [Google Scholar] [CrossRef]
- Chasapidis, L.; Grigoratos, T.; Zygogianni, A.; Tsakis, A.; Konstandopoulos, A.G. Study of Brake Wear Particle Emissions of a Minivan on a Chassis Dynamometer. Emiss. Control Sci. Technol. 2018, 4, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Hagino, H.; Oyama, M.; Sasaki, S. Airborne brake wear particle emission due to braking and accelerating. Wear 2015, 334–335, 44–48. [Google Scholar] [CrossRef]
- Farwick zum Hagen, F.H.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Benter, T. On-road vehicle measurements of brake wear particle emissions. Atmos. Environ. 2019, 217, 116943. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Singh, A.P.; Maurya, R.K.; Chandra Shukla, P.; Dhar, A.; Srivastava, D.K. Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. Int. J. Therm. Sci. 2018, 134, 475–484. [Google Scholar] [CrossRef]
- Gupta, T.; Kothari, A.; Srivastava, D.K.; Agarwal, A.K. Measurement of number and size distribution of particles emitted from a mid-sized transportation multipoint port fuel injection gasoline engine. Fuel 2010, 89, 2230–2233. [Google Scholar] [CrossRef]
- Kittelson, D.B. Engines and nanoparticles. J. Aerosol. Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Kang, S.; Lee, S.; Bae, C. Effects of Multi-Stage Split Injection on Efficiency and Emissions of Light-Duty Diesel Engine. Energies 2022, 15, 2219. [Google Scholar] [CrossRef]
- Fayad, M.A. Effect of fuel injection strategy on combustion performance and NOx/smoke trade-off under a range of operating conditions for a heavy-duty DI diesel engine. SN Appl. Sci. 2019, 1, 1088. [Google Scholar] [CrossRef] [Green Version]
- Ewphun, P.P.; Otake, M.; Nagasawa, T.; Kosaka, H.; Sato, S. Investigation on effect of offset orifice nozzle under multi pulse ultrahigh pressure injection and PPC combustion conditions. Int. J. Automot. Eng. 2020, 11, 20204127. [Google Scholar] [CrossRef] [Green Version]
- Dond, D.; Gulhane, N. Effect of Injection System Parameters on Performance and Emission Characteristics of a Small Single Cylinder Diesel Engine. Int. J. Automot. Mech. Eng. 2021, 18, 8790. [Google Scholar] [CrossRef]
- Noroozi, M.J.; Seddiq, M. Effects of Post-Injection Characteristics on the Combustion, Emission, and Performance in a Diesel-Syngas Reactivity Controlled Compression Ignition Engine. Int. J. Automot. Mech. Eng. 2021, 18, 9006–9021. [Google Scholar] [CrossRef]
- Hotta, Y.; Inayoshi, M.; Nakakita, K.; Fujiwara, K.; Sakata, I. Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection; SAE Technical Paper 2005-01-0928; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Kumar, K.S.; Raj, R.T.K. Effect of Fuel Injection Timing and Elevated Intake Air Temperature on the Combustion and Emission Characteristics of Dual Fuel Operated Diesel Engine. Procedia Eng. 2013, 64, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Fayad, M.A.; Fernández-Rodríguez, D.; Herreros, J.M.; Lapuerta, M.; Tsolakis, A. Interactions between aftertreatment systems architecture and combustion of oxygenated fuels for improved low temperature catalysts activity. Fuel 2018, 229, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Lakkireddy, V.R.; Mohammed, H.; Johnson, J.H. The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on Particle Size Distribution from a Heavy Duty Diesel Engine; SAE Technical Paper 2006:0148–7191; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Chen, H.-Y.; Mulla, S.; Weigert, E.; Camm, K.; Ballinger, T.; Cox, J.; Blakeman, P. Cold Start Concept (CSC™): A Novel Catalyst for Cold Start Emission Control. SAE Int. J. Fuels Lubr. 2013, 6, 372–381. [Google Scholar] [CrossRef]
- Thangaraja, J.; Kannan, C. Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels—A review. Appl. Energy 2016, 180, 169–184. [Google Scholar] [CrossRef]
- Mossa, M.A.A.; Hairuddin, A.A.; Nuraini, A.A.; Zulkiple, J.; Hasyuzariza, M.T. Effects of Hot Exhaust Gas Recirculation (EGR) on the Emission and Performance of a Single-Cylinder Diesel Engine. Int. J. Automot. Mech. Eng. 2019, 16, 6660–6674. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Villalta, D.; Lago Sari, R. Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Convers. Manag. 2019, 184, 327–337. [Google Scholar] [CrossRef]
- Geng, P.; Cao, E.; Tan, Q.; Wei, L. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renew. Sustain. Energy Rev. 2017, 71, 523–534. [Google Scholar] [CrossRef]
- Zhang, B.; Zuo, H.; Huang, Z.; Tan, J.; Zuo, Q. Endpoint forecast of different diesel-biodiesel soot filtration process in diesel particulate filters considering ash deposition. Fuel 2020, 272, 117678. [Google Scholar] [CrossRef]
- Paykani, A.; Chehrmonavari, H.; Tsolakis, A.; Alger, T.; Northrop, W.F.; Reitz, R.D. Synthesis gas as a fuel for internal combustion engines in transportation. Prog. Energy Combust. Sci. 2022, 90, 100995. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Sidik, N.A.C.; Azmi, W.H. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renew. Sustain. Energy Rev. 2017, 73, 307–331. [Google Scholar] [CrossRef] [Green Version]
- Knothe, G.; Razon, L.F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Kalghatgi, G.; Levinsky, H.; Colket, M. Future transportation fuels. Prog. Energy Combust. Sci. 2018, 69, 103–105. [Google Scholar] [CrossRef]
- Othman, M.F.; Adam, A.; Najafi, G.; Mamat, R. Green fuel as alternative fuel for diesel engine: A review. Renew. Sustain. Energy Rev. 2017, 80, 694–709. [Google Scholar] [CrossRef]
- How, C.B.; Taib, N.M.; Mansor, M.R.A. Performance and Exhaust Gas Emission of Biodiesel Fuel with Palm Oil Based Additive in Direct Injection Compression Ignition Engine. Int. J. Automot. Mech. Eng. 2019, 16, 6173–6187. [Google Scholar] [CrossRef]
- Daukšys, V.; Račkus, M.; Zamiatina, N. Energy Efficiency Improvement Adding Various Amounts of CNG in the Naturally Aspirated Compression Ignition Engine. Procedia Eng. 2017, 187, 222–228. [Google Scholar] [CrossRef]
- Karczewski, M.; Chojnowski, J.; Szamrej, G. A Review of Low-CO2 Emission Fuels for a Dual-Fuel RCCI Engine. Energies 2021, 14, 5067. [Google Scholar] [CrossRef]
- Kukharonak, H.; Ivashko, V.; Pukalskas, S.; Rimkus, A.; Matijošius, J. Operation of a Spark-ignition Engine on Mixtures of Petrol and N-butanol. Procedia Eng. 2017, 187, 588–598. [Google Scholar] [CrossRef]
- Freitas, E.S.d.C.; Guarieiro, L.L.N.; da Silva, M.V.I.; Amparo, K.K.d.S.; Machado, B.A.S.; Guerreiro, E.T.d.A.; de Jesus, J.F.C.; Torres, E.A. Emission and Performance Evaluation of a Diesel Engine Using Addition of Ethanol to Diesel/Biodiesel Fuel Blend. Energies 2022, 15, 2988. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, L.; Ma, F.; Xu, D.; Ji, W.; Zhao, Y.; Zhang, J. Simulation about the Effect of the Height-to-Stroke Ratios of Ports on Power and Emissions in an OP2S Engine Using Diesel/Methanol Blends. Energies 2022, 15, 2942. [Google Scholar] [CrossRef]
- Andrych-Zalewska, M.; Chlopek, Z.; Merkisz, J.; Pielecha, J. Research on Exhaust Emissions in Dynamic Operating States of a Combustion Engine in a Real Driving Emissions Test. Energies 2021, 14, 5684. [Google Scholar] [CrossRef]
- Pielecha, J.; Skobiej, K.; Kubiak, P.; Wozniak, M.; Siczek, K. Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles. Energies 2022, 15, 2423. [Google Scholar] [CrossRef]
- Youn, I.; Jeon, J. Combustion Performance and Low NOx Emissions of a Dimethyl Ether Compression-Ignition Engine at High Injection Pressure and High Exhaust Gas Recirculation Rate. Energies 2022, 15, 1912. [Google Scholar] [CrossRef]
- Karczewski, M.; Szczęch, L. Influence of the F-34 unified battlefield fuel with bio components on usable parameters of the IC engine. Maint. Reliab. 2016, 18, 358–366. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Gupta, J.G.; Dhar, A. Potential and challenges for large-scale application of biodiesel in automotive sector. Prog. Energy Combust. Sci. 2017, 61, 113–149. [Google Scholar] [CrossRef]
- Lanjekar, R.D.; Deshmukh, D. A review of the effect of the combustion of biodiesel on NOx emission, oxidative stability and cold flow properties. Renew. Sustain. Energy Rev. 2016, 54, 1401–1411. [Google Scholar] [CrossRef]
- Kegl, B. Effects of biodiesel on emissions of a bus diesel engine. Bioresour. Technol. 2008, 99, 863–873. [Google Scholar] [CrossRef]
- Khond, V.W.; Kriplani, V.M. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 59, 1338–1348. [Google Scholar] [CrossRef]
- Shaafi, T.; Sairam, K.; Gopinath, A.; Kumaresan, G.; Velraj, R. Effect of dispersion of various nano additives on the performance and emission characteristics of a CI engine fueled with diesel, biodiesel and blends—A review. Renew. Sustain. Energy Rev. 2015, 49, 563–573. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Ghobadian, B.; Rashidi, A.; Najafi, G.; Khoshtaghaza, M.H.; Rashtchi, M.; Sadeghian, S. A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renew. Energy 2018, 125, 64–72. [Google Scholar] [CrossRef]
- Saxena, V.; Kumar, N.; Saxena, V.K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fueled C.I. engine. Renew. Sustain. Energy Rev. 2017, 70, 563–588. [Google Scholar] [CrossRef]
- Damanik, N.; Ong, H.C.; Tong, C.W.; Mahlia, T.M.I.; Silitonga, A.S. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends. Environ. Sci. Pollut. Res. 2018, 25, 15307–15325. [Google Scholar] [CrossRef] [PubMed]
- Kegl, T.; Kovač Kralj, A.; Kegl, B.; Kegl, M. Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Prog. Energy Combust. Sci. 2021, 83, 100897. [Google Scholar] [CrossRef]
- Jaroń, A.; Borucka, A.; Sobecki, G. Assessment of the possibility of using nanomaterials as fuel additives in combustion engines. Combust. Engines 2022, 189, 103–112. [Google Scholar] [CrossRef]
- Fayad, M.A.; AL-Ogaidi, B.R.; Abood, M.K.; AL-Salihi, H.A. Influence of post-injection strategies and CeO2 nanoparticles additives in the C30D blends and diesel on engine performance, NOX emissions, and PM characteristics in diesel engine. Part. Sci. Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Sroka, Z.J.; Krakowian, K.; Wlostowski, R. Experimental Study of the Effect of Fuel Catalytic Additive on Specific Fuel Consumption and Exhaust Emissions in Diesel Engine. Energies 2021, 14, 54. [Google Scholar] [CrossRef]
- Adzmi, M.A.; Abdullah, A.; Abdullah, Z.; Mrwan, A.G. Effect of Al2O3 and SiO2 Metal Oxide Nanoparticles Blended with POME on Combustion, Performance and Emissions Characteristics of a Diesel Engine. Int. J. Automot. Mech. Eng. 2019, 16, 6859–6873. [Google Scholar] [CrossRef] [Green Version]
- Wróblewski, P.; Drożdż, W.; Lewicki, W.; Dowejko, J. Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland. Energies 2021, 14, 2131. [Google Scholar] [CrossRef]
- Dziubak, T. Analiza wpływu oporu przepływu filtru powietrza na napełnienie tłokowego silnika spalinowego. Zesz. Nauk. Politech. Szczec. 1992, 19, 33–40. [Google Scholar]
- Dziubak, T. Diagnostics of military vehicle engine air filters. Bull. Mil. Univ. Technol. 1998, 10, 73–89. [Google Scholar]
- Dziubak, T.; Trawiński, G. The experimental Research of the air filter flow drag influence on the T359E engine operation parameters. Bull. Mil. Univ. Technol. 2001, 4, 135–149. [Google Scholar]
- Dziubak, T.; Trawiński, G. The experimental assessment of air supply system modification on inlet air filtration efficiency and military vehicle engine effectiveness improvement. J. KONES Powertrain Transp. 2010, 17, 79–86. [Google Scholar]
- Dziubak, T.; Karczewski, M. Experimental Study of the Effect of Air Filter Pressure Drop on Internal Combustion Engine Performance. Energies 2022, 15, 3285. [Google Scholar] [CrossRef]
- Yang, A.-J.; Song, Z.-J.; Yang, J.-W.; Zhao, C.-J. Effect of Air Filter on Performance of S1110 Diesel Engine. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 022050. [Google Scholar] [CrossRef] [Green Version]
- Plotnikov, L.V.; Bernasconi, S.; Brodov, Y.M. The Effects of the Intake Pipe Configuration on Gas Exchange, and Technical and Economic Indicators of Diesel Engine with 21/21 Dimension. Procedia Eng. 2017, 206, 140–145. [Google Scholar] [CrossRef]
- Abdullah, N.R.; Shahruddin, N.S.; Mamat, A.M.I.; Kasolang, S.; Zulkifli, A.; Mamat, R. Effects of Air Intake Pressure to the Fuel Economy and Exhaust Emissions on a Small SI Engine. Procedia Eng. 2013, 68, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Shannak, B.; Damseh, R.; Alhusein, M. Influence of air intake pipe on engine exhaust emission. Forsch. Im Ing. 2005, 70, 128–132. [Google Scholar] [CrossRef]
- Thomas, J.; West, B.; Huff, S. Effect of Air Filter Condition on Diesel Vehicle Fuel Economy; SAE Technical Paper 2013-01-0311; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Bugli, N.; Dobert, S.; Flora, S. Investigating Cleaning Procedures for OEM Engine Air Intake Filters; SAE Technical Paper 2007-01-1431; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Bugli, N. Automotive Engine Air Cleaners—Performance Trends; SAE Technical Paper 2001-01-1356; SAE International: Warrendale, PA, USA, 2001. [Google Scholar] [CrossRef]
- Norman, K.; Huff, S.; West, B. Effect of Intake Air Filter Condition on Vehicle Fuel Economy; U.S. Department of Energy (DOE) Information Bridge: Washington, DC, USA, 2009. [Google Scholar]
- Barris, M.A. Total FiltrationTM: The Influence of Filter Selection on Engine Wear, Emissions and Performance; SAE Technical Paper: 952557; SAE International: Warrendale, PA, USA, 1995. [Google Scholar]
- Bugli, N.; Green, G. Performance and Benefits of Zero Maintenance Air Induction Systems; SAE Technical Paper 2005-01-1139; SAE International: Warrendale, PA, USA, 2005. [Google Scholar] [CrossRef]
- Dziubak, T.; Dziubak, S.D. Experimental Study of Filtration Materials Used in the Car Air Intake. Materials 2020, 13, 3498. [Google Scholar] [CrossRef]
- Regulation No 83 of the Economic Commission for Europe of the United Nations (UN/ECE)—Uniform Provisions Concerning the Approval of Vehicles with Regard to the Emission of Pollutants According to Engine Fuel Requirements, Supplement 1 to the 06 Series of Amendments—Date of Entry into Force: 23 June 2011, Official Journal of the European Union, 15 February 2012. Available online: https://op.europa.eu/en/publication-detail/-/publication/2f8f0ce5-66fb-4a38-ae68-558ae1b04a5f/language-en (accessed on 22 May 2022).
- PN-ISO 15550:2009; Silniki Spalinowe Tłokowe—Określanie i Metoda Pomiaru Mocy Silnika—Wymagania Ogólne. PKN: Warszawa, Poland, 2009. (In Polish)
- Rozporządzenie Ministra Infrastruktury z Dnia 31 Grudnia 2002 r. w Sprawie Warunków Technicznych Pojazdów Oraz Zakresu ich Niezbędnego Wyposażenia (Dz. U. z 2016 r. poz. 2022, z 2017 r. poz. 2338 oraz z 2018 r. poz. 855). Available online: file:///C:/Users/MDPI/Downloads/D20220122.pdf (accessed on 25 May 2022). (In Polish).
- Karczewski, M.; Wieczorek, M. Assessment of the Impact of Applying a Non-Factory Dual-Fuel (Diesel/Natural Gas) Installation on the Traction Properties and Emissions of Selected Exhaust Components of a Road Semi-Trailer Truck Unit. Energies 2021, 14, 8001. [Google Scholar] [CrossRef]
Name of Device | Range |
---|---|
Engine type | D13C460 EURO V |
Maximum power at 1400–1900 rpm | 460 hp (338 kW) |
Maximum engine speed | 2100 rpm |
Maximum torque at 1000–1400 rpm | 2300 Nm |
Number of cylinders | 6 |
Cylinder diameter | 131 mm |
Piston stroke | 158 mm |
Displacement | 12.8 dm3 |
Compression ratio | 17.8:1 |
No. | Name of Device/Measured Quantity | Type | Range | Accuracy |
---|---|---|---|---|
1. | Water dynamometer
| Zöllner PS1-3812/AE | Mo = (0–7000) Nm n = (0–3000) rpm Ne = (0–1250) kW | ± 1 Nm ± 1 rpm ± 1 kW |
2. | Fuel weight-meter (diesel)—Ge | AVL 733S Fuel Balance | (0–200) kg/h | ± 0.005 kg/h |
3. | Smoke concentration—extinction coefficient of light radiation—k | AVL Opacimeter 4390 | (0.001–10.0) m−1 | ± 0.002 m−1 |
4. | Exhaust analyser—measuring of toxic elements concentration in exhaust gases
| Atmos FIR emissions monitoring FTIR systems | CO2 (0.01-23) % CO (1.0–11,000) ppm NO (1.0–6000) ppm NO2 (1.0–6000) O2 (0.1–21) % HC (1.0–5000) H2O (0.25–25) % | ± 0.1% measured quantity |
5. | Thermocouple—measuring of exhaust temperature—ts | NiCr—NiAl (K) | (–50–1100) °C | ± 1 °C |
6. | Mass air consumption—Qs | SensyMaster FMT430 Thermal Mass Flowmeter | (100–6000) m3/h | ± 1.0 m3/h |
7. | Vacuum in the intake system | TESTO 400 | (–100–200) hPa | 0.3 Pa + 1% measured quantity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziubak, T.; Karczewski, M. Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine. Energies 2022, 15, 4815. https://doi.org/10.3390/en15134815
Dziubak T, Karczewski M. Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine. Energies. 2022; 15(13):4815. https://doi.org/10.3390/en15134815
Chicago/Turabian StyleDziubak, Tadeusz, and Mirosław Karczewski. 2022. "Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine" Energies 15, no. 13: 4815. https://doi.org/10.3390/en15134815
APA StyleDziubak, T., & Karczewski, M. (2022). Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine. Energies, 15(13), 4815. https://doi.org/10.3390/en15134815