Measurement of the Convective Heat Transfer Coefficient and Temperature of Vehicle-Integrated Photovoltaic Modules
Abstract
:1. Introduction
2. Measurement of Convective Heat Transfer Coefficient
2.1. Experimental Setup
2.2. Experimental Results
3. Measurement of Temperature
3.1. Experimental Setup
3.2. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The European Technology and Innovation Platform for Photovoltaics Vehicle-Integrated Photovoltaics (VIPV) as a Core Source for Electricity in Road Transport. Available online: https://etip-pv.eu/publications/etip-pv-publications/download/vehicle-integrated-photovoltaics-vipv-as-a-core-so (accessed on 25 January 2020).
- Araki, K.; Carr, A.J.; Chabuel, F.; Commault, B.; Derks, R.; Ding, K.; Duigou, T.; Ekins-Daukes, N.J.; Gaume, J.; Hirota, T.; et al. State-of-the-Art and Expected Benefits of PV-Powered Vehicles 2021; Report IEA-PVPS; International Energy Agency: Paris, France, 2021; ISBN 9783907281154. [Google Scholar]
- NEDO Interim Report of the Exploratory Committee on the Automobile Using Photovoltaic System. Available online: https://www.nedo.go.jp/news/press/AA5_100909.html (accessed on 20 January 2021).
- Lodi, C.; Seitsonen, A.; Paffumi, E.; De Gennaro, M.; Huld, T.; Malfettani, S. Reducing CO2 emissions of conventional fuel cars by vehicle photovoltaic roofs. Transp. Res. Part D Transp. Environ. 2018, 59, 313–324. [Google Scholar] [CrossRef]
- Wheeler, A.; Leveille, M.; Anton, I.; Leilaeioun, A.; Kurtz, S. Determining the Operating Temperature of Solar Panels on Vehicles. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 3592–3597. [Google Scholar]
- Wheeler, A.; Leveille, M.; Anton, I.; Limpinsel, M.; Kurtz, S. Outdoor Performance of PV Technologies in Simulated Automotive Environments. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 3103–3110. [Google Scholar]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Sánchez-Friera, P.; Piliougine, M.; Peláez, J.; Carretero, J.; Sidrach de Cardona, M. Analysis of degradation mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe. Prog. Photovolt. Res. Appl. 2011, 19, 658–666. [Google Scholar] [CrossRef]
- Eitner, U.; Kajari-Schröder, S.; Köntges, M.; Altenbach, H. Thermal Stress and Strain of Solar Cells in Photovoltaic Modules. In Shell-Like Structures; Springer: Berlin/Heidelberg, Germany, 2011; pp. 453–468. [Google Scholar]
- IEC 61215-1:2016; Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- Markert, J.; Kutter, C.; Newman, B.; Gebhardt, P.; Heinrich, M. Proposal for a Safety Qualification Program for Vehicle-Integrated PV Modules. Sustainability 2021, 13, 13341. [Google Scholar] [CrossRef]
- Kühnel, M.; Hanke, B.; Geißendörfer, S.; von Maydell, K.; Agert, C. Energy forecast for mobile photovoltaic systems with focus on trucks for cooling applications. Prog. Photovolt. Res. Appl. 2017, 25, 525–532. [Google Scholar] [CrossRef]
- Kronthaler, L.; Alberti, L.; Moser, D. The Effect of Head-Wind Cooling on the Electrical and Thermal Behaviour of Vehicle-Integrated Photovoltaic (VIPV) Systems. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 23–25 September 2014; pp. 3541–3544. [Google Scholar]
- Palyvos, J.A. A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Appl. Therm. Eng. 2008, 28, 801–808. [Google Scholar] [CrossRef]
- Armstrong, S.; Hurley, W.G. A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 2010, 30, 1488–1495. [Google Scholar] [CrossRef]
- Sharma, M.K.; Bhattacharya, J. Finding optimal operating point for advection-cooled concentrated photovoltaic system. Sustain. Energy Technol. Assess. 2022, 49, 101769. [Google Scholar] [CrossRef]
- Lindholm, D.; Kjeldstad, T.; Selj, J.; Marstein, E.S.; Fjær, H.G. Heat loss coefficients computed for floating PV modules. Prog. Photovolt. Res. Appl. 2021, 29, 1262–1273. [Google Scholar] [CrossRef]
- Jurčević, M.; Nižetić, S.; Marinić-Kragić, I.; Čoko, D.; Arıcı, M.; Giama, E.; Papadopoulos, A. Investigation of heat convection for photovoltaic panel towards efficient design of novel hybrid cooling approach with incorporated organic phase change material. Sustain. Energy Technol. Assess. 2021, 47, 101497. [Google Scholar] [CrossRef]
- Khodadadi, M.; Sheikholeslami, M. Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM. Int. J. Heat Mass Transf. 2021, 183, 122232. [Google Scholar] [CrossRef]
- Kurz, D.; Nawrowski, R. Thermal time constant of PV roof tiles working under different conditions. Appl. Sci. 2019, 9, 1626. [Google Scholar] [CrossRef] [Green Version]
- Test, F.L.; Lessmann, R.C.; Johary, A. Heat Transfer During Wind Flow over Rectangular Bodies in the Natural Environment. J. Heat Transf. 1981, 103, 262–267. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission; McGraw-Hill: New York, NY, USA, 1942. [Google Scholar]
- Mezrhab, A.; Bouzidi, M. Computation of thermal comfort inside a passenger car compartment. Appl. Therm. Eng. 2006, 26, 1697–1704. [Google Scholar] [CrossRef]
- Oh, M.S.; Ahn, J.H.; Kim, D.W.; Jang, D.S.; Kim, Y. Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system. Appl. Energy 2014, 133, 14–21. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, F.; Song, H.; Liu, C.; Lu, B. Analysis and validation of transient thermal model for automobile cabin. Appl. Therm. Eng. 2017, 122, 91–102. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, L.; Xu, G.; Li, Y.; Chen, W.; Tao, W.-Q. Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/numerical model and validation. Appl. Therm. Eng. 2009, 29, 2022–2027. [Google Scholar] [CrossRef]
- Nakamura, H.; Yamada, S. Quantitative evaluation of spatio-temporal heat transfer to a turbulent air flow using a heated thin-foil. Int. J. Heat Mass Transf. 2013, 64, 892–902. [Google Scholar] [CrossRef]
- Tiselj, I.; Sharma, M.P.; Zajec, B.; Veljanovski, N.; Kren, J.; Cizelj, L.; Mikuž, B. Investigation of turbulent flow in square duct with heated foil thermometry. Int. J. Heat Mass Transf. 2021, 175, 121381. [Google Scholar] [CrossRef]
- de Dear, R.J.; Arens, E.; Hui, Z.; Oguro, M. Convective and radiative heat transfer coefficients for individual human body segments. Int. J. Biometeorol. 1997, 40, 141–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Ito, K. Numerical and experimental estimation of convective heat transfer coefficient of human body under strong forced convective flow. J. Wind Eng. Ind. Aerodyn. 2014, 126, 107–117. [Google Scholar] [CrossRef]
- Shenoy, S.K.; Diller, T.E. Heat flux measurements from a human forearm under natural convection and isothermal jets. Int. J. Heat Mass Transf. 2018, 123, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Keogh, J.; Barber, T.; Diasinos, S.; Doig, G. The aerodynamic effects on a cornering Ahmed body. J. Wind Eng. Ind. Aerodyn. 2016, 154, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Volpe, R.; Ferrand, V.; Da Silva, A.; Le Moyne, L. Forces and flow structures evolution on a car body in a sudden crosswind. J. Wind Eng. Ind. Aerodyn. 2014, 128, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Tsubokura, M.; Nakashima, T.; Kitayama, M.; Ikawa, Y.; Doh, D.H.; Kobayashi, T. Large eddy simulation on the unsteady aerodynamic response of a road vehicle in transient crosswinds. Int. J. Heat Fluid Flow 2010, 31, 1075–1086. [Google Scholar] [CrossRef] [Green Version]
Heat flux sensor (HIOKI, Z2012-01) | Thickness 0.25 [mm] Thermal resistance 1.3 × 10−3 [m2·K/W] Sensitivity 0.01 [mV/W·m−2] Responsivity 0.4 [s] Uncertainty 2% |
Thermocouple (HIOKI, Z2012-01) | Type K (Class 2) Compensating cable KX (Class 2) Responsivity 0.3 [s] Uncertainty 2.5% |
IR radiometer (Kipp & Zonen, CG3) | Spectral range 4.5–42 [μm] Sensitivity 0.01 [mV/W·m−2] Responsivity 8 [s] Uncertainty 5% |
Anemometer (KANOMAX, 6542-21) | Wind speed range 0.01–30 [m/s] Responsivity 1 [s] Uncertainty 2% |
Pyranometer (EIKO, ML-02) | Spectral range 0.4–1.1 [μm] Sensitivity 0.05 [mV/W·m−2] Responsivity 1 × 10−3 [s] Uncertainty 2% |
Film heater (Heat lab, TP100-50-50SE) | Thickness 0.15 [mm] Size (heating area) 0.045 × 0.035 [m] Inter-terminal resistance 93.3 [Ω] |
Small Van | Sedan | |
---|---|---|
Date and time | 2 August 2021 22:00–23:30 | 4 October 2021 20:30–22:00 |
Average air temperature [°C] (Min.–Max.) | 28.5 (28.1–28.7) | 20.0 (19.5–20.8) |
Average wind velocity [m/s] | 1.12 | 1.50 |
Small Van | Sedan | |
---|---|---|
Date and time | 5 August 2021 12:30–14:00 | 3 October 2021 13:30–15:00 |
Average air temperature [°C] (Min.–Max.) | 34.5 (34.2–34.9) | 26.9 (26.2–27.5) |
Average wind speed [m/s] | 2.97 | 1.65 |
Weather | Clear sky | Clear sky |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, Y.; Sato, D.; Yamada, N. Measurement of the Convective Heat Transfer Coefficient and Temperature of Vehicle-Integrated Photovoltaic Modules. Energies 2022, 15, 4818. https://doi.org/10.3390/en15134818
Hayakawa Y, Sato D, Yamada N. Measurement of the Convective Heat Transfer Coefficient and Temperature of Vehicle-Integrated Photovoltaic Modules. Energies. 2022; 15(13):4818. https://doi.org/10.3390/en15134818
Chicago/Turabian StyleHayakawa, Yoshitaka, Daisuke Sato, and Noboru Yamada. 2022. "Measurement of the Convective Heat Transfer Coefficient and Temperature of Vehicle-Integrated Photovoltaic Modules" Energies 15, no. 13: 4818. https://doi.org/10.3390/en15134818
APA StyleHayakawa, Y., Sato, D., & Yamada, N. (2022). Measurement of the Convective Heat Transfer Coefficient and Temperature of Vehicle-Integrated Photovoltaic Modules. Energies, 15(13), 4818. https://doi.org/10.3390/en15134818