Artificial Intelligence-Based Protection for Smart Grids
Abstract
:1. Introduction
2. Protection Challenges
3. Proposed CE and ZO Protection Algorithms
4. Analyzed Grid and Test Results
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ates, Y.; Uzunoglu, M.; Karakas, A.; Boynuegri, A.R. The Case Study Based Protection Analysis for Smart Distribution Grids Including Distributed Generation Units. In Proceedings of the 12th IET International Conference on Developments in Power System Protection (DPSP 2014), Copenhagen, Denmark, 31 March–3 April 2014; pp. 1–5. [Google Scholar]
- Singh, V.K.; Nath, T. Energy generation by small hydro power plant under different operating condition. Int. J. Hydromech. 2021, 4, 331–349. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, Y.; Liu, X.; Zhang, L.; Cheng, H. Evaluation and comparison of sideband harmonics and acoustic responses with continuous and discontinuous PWM strategies in permanent magnet synchronous motor for electric vehicles. Int. J. Hydromech. 2022, 5, 109–123. [Google Scholar] [CrossRef]
- Watson, J.; Schmela, M. Global Market Outlook for Solar Power; Solar Power Europe: Brussels, Belgium, 2018. [Google Scholar]
- Yu, J.J.Q.; Hou, Y.; Lam, A.Y.S.; Li, V.O.K. Intelligent Fault Detection Scheme for Microgrids with Wavelet-based Deep Neural Networks. IEEE Trans. Smart Grid 2017, 3053, 1694–1703. [Google Scholar] [CrossRef]
- P.O.12.2: Technical Requirements of Wind Power and Photovoltaic Facilities (Draft); Red Electra: Madrid, Spain, 2008.
- Perera, N.; Rajapakse, A.D.; Buchholzer, T.E. Isolation of faults in distribution networks with distributed generators. IEEE Trans. Power Deliv. 2008, 23, 2347–2355. [Google Scholar] [CrossRef]
- Yeh, C.; Chen, C.; Member, S.; Ku, T.; Lin, C.; Member, S.; Hsu, C.; Chang, Y.; Lee, Y. Design of Special Protection System for an Offshore Island With High-PV Penetration. IEEE Trans. Ind. Appl. 2017, 53, 947–953. [Google Scholar] [CrossRef]
- Momoh, J. Smart Grid: Fundamentals of Design and Analysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A. Fault location and detection techniques in power distribution systems with distributed generation: A review. Renew. Sustain. Energy Rev. 2017, 74, 949–958. [Google Scholar] [CrossRef]
- Lu, Y.; Member, S.; Du, J.; Member, S.; Lin, X.; Ma, J. An Asymmetrical Fault Line Selection Based on I2 Scalar Product Research in Distribution System with DGs. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Tendayi, P.; Bansal, R. Renewable distributed generation: The hidden challenges—A review from the protection perspective. Renew. Sustain. Energy Rev. 2016, 58, 1457–1465. [Google Scholar] [CrossRef]
- Senarathna, T.S.S.; Udayanga Hemapala, K.T.M. Review of adaptive protection methods for microgrids. AIMS Energy 2019, 7, 557–578. [Google Scholar] [CrossRef]
- Norshahrani, M.; Mokhlis, H.; Bakar, A.H.A.; Jamian, J.J.; Sukumar, S. Progress on protection strategies to mitigate the impact of renewable distributed generation on distribution systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef] [Green Version]
- Van Der Walt, H.L.R.; Bansal, R.C.; Naidoo, R. PV based distributed generation power system protection: A review. Reinf. Plast. 2018, 24, 33–40. [Google Scholar] [CrossRef]
- Bakkar, M.; Bogarra, S.; Córcoles, F.; Iglesias, J. Overcurrent protection based on ANNs for smart distribution networks with grid-connected VSIs. IET Gener. Transm. Distrib. 2020, 15, 1159–1174. [Google Scholar] [CrossRef]
- Hussain, N.; Nasir, M.; Vasquez, J.C.; Guerrero, J.M. Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems—A Review. Energies 2020, 13, 2149. [Google Scholar] [CrossRef]
- Aghdam, T.S.; Kazemi Karegar, H.; Zeineldin, H.H. Variable tripping time differential protection for microgrids considering DG stability. IEEE Trans. Smart Grid 2019, 10, 2407–2415. [Google Scholar] [CrossRef]
- Mahmoudian Esfahani, M.; Mohammed, O. An intelligent protection scheme to deal with extreme fault currents in smart power systems. Int. J. Electr. Power Energy Syst. 2020, 115, 105434. [Google Scholar] [CrossRef]
- Ustun, T.S.; Khan, R.H. Multiterminal Hybrid Protection of Microgrids over Wireless Communications Network. IEEE Trans. Smart Grid 2015, 6, 2493–2500. [Google Scholar] [CrossRef]
- Nougain, V.; Mishra, S.; Pradhan, A.K. MVDC Microgrid Protection Using a Centralized Communication With a Localized Backup Scheme of Adaptive Parameters. IEEE Trans. Power Deliv. 2019, 34, 869–878. [Google Scholar] [CrossRef]
- Manohar, M.; Koley, E.; Ghosh, S. Enhancing the reliability of protection scheme for PV integrated microgrid by discriminating between array faults and symmetrical line faults using sparse auto encoder. IET Renew. Power Gener. 2019, 13, 308–317. [Google Scholar] [CrossRef]
- Yuan, C.; Member, S.; Haj-ahmed, M.A.; Member, S.; Illindala, M.S.; Member, S. Protection Strategies for Medium-Voltage Direct-Current Microgrid at a Remote Area Mine Site. IEEE Trans. Ind. Appl. 2015, 51, 2846–2853. [Google Scholar] [CrossRef]
- Adewole, A.C. Investigation of Methodologies for Fault Detection and Diagnosis in Electric Power System Protection. Master’s Thesis, Cape Peninsula University of Technology, Cape Town, South Africa, 2012. [Google Scholar]
- Yogee, G.S.; Mahela, O.P.; Kansal, K.D.; Khan, B.; Mahla, R.; Alhelou, H.H.; Siano, P. An algorithm for recognition of fault conditions in the utility grid with renewable energy penetration. Energies 2020, 13, 2383. [Google Scholar] [CrossRef]
- Pujiantara, R.F.; Pujiantara, M.; Priyadi, A.; Asfani, D.A. Protection coordination using zone selective interlocking method and neural network in IEEE 9 bus plan. In Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 6–7 March 2018; pp. 196–201. [Google Scholar]
- He, J.; Liu, L.; Xu, Y.; Ding, F.; Zhang, D. A two-step protection algorithm for smart distribution systems with DGs. Int. Trans. Electr. Energy Syst. 2018, 28, e2506. [Google Scholar] [CrossRef]
- Baran, M.E.; Hooshyar, H.; Shen, Z.; Huang, A. Accommodating high PV penetration on distribution feeders. IEEE Trans. Smart Grid 2012, 3, 1039–1046. [Google Scholar] [CrossRef]
- Jamali, S.; Borhani-Bahabadi, H. Non-communication protection method for meshed and radial distribution networks with synchronous-based DG. Int. J. Electr. Power Energy Syst. 2017, 93, 468–478. [Google Scholar] [CrossRef]
- Kida, A.A.; Labrador Rivas, A.E.; Gallego, L.A. An improved simulated annealing–linear programming hybrid algorithm applied to the optimal coordination of directional overcurrent relays. Electr. Power Syst. Res. 2020, 181, 106197. [Google Scholar] [CrossRef]
- Shabani, A.; Mazlumi, K. Evaluation of a Communication-Assisted Overcurrent Protection Scheme for Photovoltaic-Based DC Microgrid. IEEE Trans. Smart Grid 2020, 11, 429–439. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Mat Said, D.; Wazir Mustafa, M.; Hafiz Habibuddin, M.; Ghaffari, K. An analytical literature review of the available techniques for the protection of micro-grids. Int. J. Electr. Power Energy Syst. 2014, 58, 300–306. [Google Scholar] [CrossRef]
- Han, B.; Li, H.; Wang, G.; Zeng, D.; Liang, Y. A Virtual Multi-Terminal Current Differential Protection Scheme for Distribution Networks with Inverter-Interfaced Distributed Generators. IEEE Trans. Smart Grid 2018, 9, 5418–5431. [Google Scholar] [CrossRef]
- Ghotbi-Maleki, M.; Chabanloo, R.M.; Zeineldin, H.H.; Miangafsheh, S.M.H. Design of Setting Group Based Overcurrent Protection Scheme for Active Distribution Networks Using MILP. IEEE Trans. Smart Grid 2020, 12, 1185–1193. [Google Scholar] [CrossRef]
- Sharaf, H.M.; Zeineldin, H.H.; El-Saadany, E. Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays. IEEE Trans. Smart Grid 2018, 9, 143–151. [Google Scholar] [CrossRef]
- Alam, M.N.; Gokaraju, R.; Chakrabarti, S. Protection coordination for networked microgrids using single and dual setting overcurrent relays. IET Gener. Transm. Distrib. 2020, 14, 2818–2828. [Google Scholar] [CrossRef]
- Hong, L.; Rizwan, M.; Wasif, M.; Ahmad, S.; Zaindin, M.; Firdausi, M. User-Defined Dual Setting Directional Overcurrent Relays with Hybrid Time Current-Voltage Characteristics-Based Protection Coordination for Active Distribution Network. IEEE Access 2021, 9, 62752–62769. [Google Scholar] [CrossRef]
- Shih, M.Y.; Conde, A.; Leonowicz, Z.; Martirano, L. An Adaptive Overcurrent Coordination Scheme to Improve Relay Sensitivity and Overcome Drawbacks due to Distributed Generation in Smart Grids. IEEE Trans. Ind. Appl. 2017, 53, 5217–5228. [Google Scholar] [CrossRef] [Green Version]
- Shih, M.Y.; Conde, A.; Ángeles-Camacho, C.; Fernández, E.; Leonowicz, Z.; Lezama, F.; Chan, J. A two stage fault current limiter and directional overcurrent relay optimization for adaptive protection resetting using differential evolution multi-objective algorithm in presence of distributed generation. Electr. Power Syst. Res. 2021, 190, 106844. [Google Scholar] [CrossRef]
- Li, W.; Tan, Y.; Li, Y.; Cao, Y.; Chen, C.; Zhang, M. A New Differential Backup Protection Strategy for Smart Distribution Networks: A Fast and Reliable Approach. IEEE Access 2019, 7, 38135–38145. [Google Scholar] [CrossRef]
- Kar, S.; Samantaray, S.R.; Zadeh, M.D. Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme. IEEE Syst. J. 2017, 11, 1161–1169. [Google Scholar] [CrossRef]
- Allahdadi, K.; Sadeghkhani, I.; Fani, B. Protection of Converter-Interfaced Microgrids Using Modified Short-Time Correlation Transform. IEEE Syst. J. 2020, 14, 5172–5175. [Google Scholar] [CrossRef]
- Saleh, K.; Allam, M.A.; Mehrizi-Sani, A. Protection of Inverter-Based Islanded Microgrids via Synthetic Harmonic Current Pattern Injection. IEEE Trans. Power Deliv. 2021, 36, 2434–2445. [Google Scholar] [CrossRef]
- Shih, M.Y.; Conde Enríquez, A.; Hsiao, T.Y.; Torres Treviño, L.M. Enhanced differential evolution algorithm for coordination of directional overcurrent relays. Electr. Power Syst. Res. 2017, 143, 365–375. [Google Scholar] [CrossRef]
- Mishra, P.; Kumar Pradhan, A.; Bajpai, P. Adaptive Relay Setting for Protection of Distribution System with Solar PV. In Proceedings of the 2018 20th National Power Systems Conference (NPSC), Tiruchirappalli, India, 14–16 December 2018; Volume 2, pp. 1–5. [Google Scholar] [CrossRef]
- Solak, K.; Rebizant, W.; Klimek, A. Fuzzy adaptive transmission-line differential relay immune to CT saturation. IEEE Trans. Power Deliv. 2012, 27, 766–772. [Google Scholar] [CrossRef]
- Samadi, A.; Mohammadi Chabanloo, R. Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups. Int. J. Electr. Power Energy Syst. 2020, 120, 106026. [Google Scholar] [CrossRef]
- Mishra, M.; Panigrahi, R.R.; Rout, P.K. A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection. Ain Shams Eng. J. 2019, 10, 307–318. [Google Scholar] [CrossRef]
- SRZ001: Particular Technical Specifications of HV/MV Substations; Laboratorio Central Oficial de Electrotecnia: Madrid, Spain, 2018.
- Kayri, M. Predictive abilities of Bayesian regularization and levenberg-marquardt algorithms in artificial neural networks: A comparative empirical study on social data. Math. Comput. Appl. 2016, 21, 20. [Google Scholar] [CrossRef]
- IEC 61850 Communication Protocol Manual; ABB Co.: Västerås, Sweden, 2011.
- Kezunovic, M.; Ren, J.; Lotfifard, S. Design, Modeling and Evaluation of Protective Relays for Power Systems, 1st ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Benmouyal, G.; Meisinger, M.; Burnworth, J.; Elmore, W.A.; Freirich, K.; Kotos, P.A.; Leblanc, P.R.; Lerley, P.J.; McConnell, J.E.; Mizener, J.; et al. IEEE standard inverse-time characteristic equations for overcurrent relays. IEEE Trans. Power Deliv. 1999, 14, 868–871. [Google Scholar] [CrossRef]
Main Grid | HV/MV Transformer (YNd11) | Zig-Zag | DL | MV/LV Transformer (Dyn11) | DG |
---|---|---|---|---|---|
Rated voltage: 66 kV Short circuit power: 360 MVA | Rated power: 25 MVA Rated voltage: 66/20 kV Usc (%): 11 | Grounding reactance:69.282 Ω Single-phase fault current: 500 A | Resistance: 0.16 Ω/km Reactance: 0.109 Ω/km Capacitance: 0.309 μF/km Line length: 2 km | Rated power: 3 × 2 MVA Rated voltage: 20/0.4 kV Usc (%): 4.5 | Rated power: 6 MVA Rated voltage: 400 V |
Parameter (OCR) | Value |
---|---|
Pick up current (pu) | 1 |
Time Dial (TD) | 0.5 |
Current Transformer (CT) | 500:1 |
Parameter (DR) | Value |
---|---|
Differential current (pu) | 1.08 |
Biased characteristic (K) | 0.5 |
Current Transformer (CT) | 500:1 |
Components | Parameters | Values |
---|---|---|
CINERGIA Inverter | Rated power | 10 kVA |
Rated voltage | 400 V | |
Filter | Inductance (L) | 10 mH |
Resistance (R) | 0.2 Ω | |
DC bus | DC rated voltage | 800 V |
Three-phase Pacific Power Source | 345AMXT | 4.5 kVA |
SSR | Crydom H12WD4850 | 48–660 VAC |
Distribution Lines (LN1, LN2, LN3) | Inductance (L1, L2, L3) | 2.74, 1.37, 4.11 mH |
Resistance (R1, R2, R3) | 1250, 625, 1875 mΩ | |
Capacitance (C1, C2, C3) | 0.632, 0.316, 10, 30 µF | |
Loads | Inductance (L1, L2) | 10, 30 mH |
Resistance (R1, R2) | 14.5, 42 Ω |
References | Protection Strategy | Experimental Verification | Grid Reconfiguration | Trip Time | Advantages | Disadvantages |
---|---|---|---|---|---|---|
[22] | DNN | Yes | No | 14 ms | Fast tripping, Variable DG penetration, Different fault resistance | Communication problems, The offline calculation, Not adaptable for network modifications |
[27] | Multi-terminal DR | Yes | No | 90 ms | Fast tripping, variable DG penetration, different fault resistance | Communication problems |
Proposed method [16] | CE-ZO | Yes | Yes | 10 ms | Fast tripping, variable DG penetration, fault locations, fault types, (HV/MV) transformer configuration, fault resistance. | Communication problems |
[35] | Dual setting OCR | No | Yes | >100 ms | Variable DG penetration, high fault resistance | Offline calculation |
[37] | OCR | No | No | >200 ms | High DG penetration, different fault resistance | Offline calculation, not adaptable for network modifications |
[38] | MAS and OCR | No | No | 300 ms | High DG penetration, no central controller | Communication problems |
[45] | Centralize controller and Linear programming | No | Yes | 421 ms | Variable DG penetration, no need for training, obtain relay settings simultaneously | Communication problems, knowledge of DG and PD status, more complex with large no. of buses |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakkar, M.; Bogarra, S.; Córcoles, F.; Aboelhassan, A.; Wang, S.; Iglesias, J. Artificial Intelligence-Based Protection for Smart Grids. Energies 2022, 15, 4933. https://doi.org/10.3390/en15134933
Bakkar M, Bogarra S, Córcoles F, Aboelhassan A, Wang S, Iglesias J. Artificial Intelligence-Based Protection for Smart Grids. Energies. 2022; 15(13):4933. https://doi.org/10.3390/en15134933
Chicago/Turabian StyleBakkar, Mostafa, Santiago Bogarra, Felipe Córcoles, Ahmed Aboelhassan, Shuo Wang, and Javier Iglesias. 2022. "Artificial Intelligence-Based Protection for Smart Grids" Energies 15, no. 13: 4933. https://doi.org/10.3390/en15134933
APA StyleBakkar, M., Bogarra, S., Córcoles, F., Aboelhassan, A., Wang, S., & Iglesias, J. (2022). Artificial Intelligence-Based Protection for Smart Grids. Energies, 15(13), 4933. https://doi.org/10.3390/en15134933