Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM
Abstract
:1. Introduction
2. Experimental Details
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meier, R.; Cascio, W.E.; Ghio, A.J.; Wild, P.; Danuser, B.; Riediker, M. Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers. Environ. Health Perspect. 2014, 122, 726–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, M.S.; Swinburn, T.K.; Neitzel, R.L. Environmental noise pollution in the US: Developing an effective public health response. Environ. Health Perspect. 2014, 122, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kamp, I.; Babisch, W.; Brown, A.L. Environmental noise and health. In The Praeger Handbook of Environmental Health; Friis, R.H., Ed.; ABC-CLIO: Santa Barbara, CA, USA, 2012; Volume 1, pp. 69–93. ISBN 978-0-313-38601-5. [Google Scholar]
- Babisch, W.; Dutilleux, G.; Paviotti, M.; Backman, A.; Gergely, B.; McManus, B. Good Practice Guide on Noise Exposure and Potential Health Effects; EEA Technical report; European Environmental Agency: Copenhagen, Denmark, 2010; Volume 11. [Google Scholar]
- Orban, E.; McDonald, D.; Sutcliffe, R.; Hoffman, B.; Fuks, K.B.; Dragono, N.; Viehmann, A.; Erbel, R.; Jöckel, K.H.; Pundt, N.; et al. Residential road traffic noise and high depressive symptoms after five years of follow-up. Environ. Health Perspect. 2016, 124, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Sygna, K.; Aasvang, G.M.; Aamodt, G.; Oftedal, B.; Krog, N.H. Road traffic noise, sleep and mental health. Environ. Res. 2014, 131, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Evandt, J.; Oftedal, B.; Hjertager Krog, N.; Nafstad, P.; Schwarze, P.E.; Marit Aasvang, G. A population-based study on nighttime road traffic noise and insomnia. Sleep 2017, 40, zsw055. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.; Yoon, P.W.; Kaufmann, R.B. Introduction: CDC Health Disparities and Inequalities Report—United States. MMWR Supplyments 2013, 62, 3–5. [Google Scholar]
- Duhme, H.; Weiland, S.K.; Keil, U. Epidemiological analyses of the relationship between environmental pollution and asthma. Toxicol. Lett. 1998, 102, 307–316. [Google Scholar] [CrossRef]
- Hu, S.; McDonald, R.; Martuzevicius, D.; Biswas, P.; Grinshpun, S.A.; Kelley, A.; Reponen, T.; Lockey, J.; LeMasters, G. UNMIX modeling of ambient PM 2.5 near an interstate highway in Cincinnati, OH, USA. Atmos. Environ. 2006, 40, 378–395. [Google Scholar] [CrossRef] [Green Version]
- Martuzevicius, D.; Grinshpun, S.A.; Lee, T.; Hu, S.; Biswas, P.; Reponen, T.; LeMasters, G. Traffic-related PM 2.5aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmos. Environ. 2008, 42, 6575–6585. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Venkatram, A.; Yang, B.; Zhang, K.M. Influence of solid noise barriers on near-road and on-road air quality. Atmos. Environ. 2016, 129, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Finn, D.; Clawson, K.L.; Carter, R.G.; Rich, J.D.; Eckman, R.M.; Perry, S.G.; Isakov, V.; Heist, D.K. Tracer studies to characterize the effects of roadside noise barriers on near-road pollutant dispersion under varying atmospheric stability conditions. Atmos. Environ. 2010, 44, 204–214. [Google Scholar] [CrossRef]
- NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 16 July 2021).
- United States Environmental Protection Agency. Transportation Conformity Guidance for Quantitative Hot-Spot Analyses in PM 2.5 and PM10 Nonattainment and Maintenance Areas; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Ryan, P.H.; LeMasters, G.K.; Biswas, P.; Levin, L.; Hu, S.; Lindsey, M.; Bernstein, D.I.; Lockey, J.; Villareal, M.; Khurana Hershey, G.K.; et al. A comparison of proximity and land use regression traffic exposure models and wheezing in infants. Environ. Health Perspect. 2007, 115, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunekreef, B.; Janssen, N.A.; de Hartog, J.; Harssema, H.; Knape, M.; van Vliet, P. Air pollution from truck traffic and lung function in children living near motorways. Epidemiology 1997, 8, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, J. Influence of indoor factors in dwellings on the development of childhood asthma. Int. J. Hyg. Environ. Health. 2011, 214, 1–25. [Google Scholar] [CrossRef]
- Health Effects Institute. Panel on the Health Effects of Traffic-Related Air Pollution. In Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Special Reort 17; Health Effects Institute: Cambridge, MA, USA, 2010. [Google Scholar]
- Salvi, A.; Salim, S. Neurobehavioral consequences of traffic-related air pollution. Front. Neurosci. 2019, 13, 1232. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Avol, E.; Gilliland, F.; Vora, H.; Thomas, D.; Berhane, K.; McConnell, R.; Kuenzli, N.; Lurmann, F.; Rappaport, E.; et al. The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age. N. Engl. J. Med. 2004, 351, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- McConnell, R.; Berhane, K.; Yao, L.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Künzli, N.; Gauderman, J.; Avol, E.D.; Thomas, D.; et al. Traffic, susceptibility, and childhood asthma. Environ. Health Perspect. 2006, 114, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.H.; LeMasters, G.K.; Levin, L.; Burkle, J.; Biswas, P.; Hu, S.; Grinshpun, S.; Reponen, T. A land-use regression model for estimating microenvironmental diesel exposure given multiple addresses from birth through childhood. Sci. Total Environ. 2008, 404, 139–147. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, J.; Hu, L.; Jiang, Y.; Duan, C.; Li, Z.; Wang, X.; Zhang, H. Risk factors associated with mortality of COVID-19 in 3125 counties of the United States. Infect. Dis. Poverty 2021, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef] [PubMed]
- Donavan, P.R.; Janello, C.J. Mapping Heavy Vehicle Noise Source Heights for Highway Noise Analysis; No. Project 25-45; Transportation Research Board: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D.; Verheyen, K. Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vib. 2012, 331, 2404–2425. [Google Scholar] [CrossRef] [Green Version]
- Lacasta, A.M.; Penaranda, A.; Cantalapiedra, I.R.; Auguet, C.; Bures, S.; Urrestarazu, M. Acoustic evaluation of modular greenery noise barriers. Urban For. Urban Green. 2016, 20, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Monazzam, M.R.; Fard, S.M.B. Impacts of Different Median Barrier Shapes on a Roadside Environmental Noise Screen. Environ. Eng. Sci. 2011, 28, 435–441. [Google Scholar] [CrossRef]
- Cianfrini, C.; Corcione, M.; Fontana, L. Experimental verification of the acoustic performance of diffusive roadside noise barriers. Appl. Acoust. 2007, 68, 1357–1372. [Google Scholar] [CrossRef]
- Oldham, D.J.; Egan, C.A. A parametric investigation of the performance of T-profiled highway noise barriers and the identification of a potential predictive approach. Appl. Acoust. 2011, 72, 803–813. [Google Scholar] [CrossRef]
- Karimi, M.; Younesian, D. Optimized T-Shape and Y-Shape Inclined Sound Barriers for Railway Noise Mitigation. J. Low Freq. Noise Vib. Act. Control 2014, 33, 357–370. [Google Scholar] [CrossRef]
- England Health Agent. The Design Manual for Roads and Bridges; England Health Agent: London, UK, 2015.
- Berglund, B.; Hassmén, P.; Job, R. Sources and effects of low-frequency noise. J. Acoust. Soc. Am. 1996, 99, 2985–3002. [Google Scholar] [CrossRef]
- Twardella, D.; Ndrepepa, A. Relationship between noise annoyance from road traffic noise and cardiovascular diseases: A meta-analysis. Noise Health 2011, 13, 251. [Google Scholar] [CrossRef]
- Leventhall, H.G. Low frequency noise and annoyance. Noise Health 2004, 6, 59–72. [Google Scholar] [PubMed]
- Auerbach, M.; Bockstedte, A.; Zaleski, O.; Von Estorff, O. Numerical and experimental investigations of noise barriers with Helmholtz resonators. In Proceedings of the NOISE-CON 2010, Baltimore, MD, USA, 19–21 April 2010. [Google Scholar]
- Chintapalli, V.S.N.R.; Padmanabhan, C. An experimental investigation of cavity noise control using mistuned Helmholtz resonators. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Washington, DC, USA, 2014; Volume 249, pp. 1413–1418. [Google Scholar]
- Yang, C.; Pan, J.; Cheng, L. A mechanism study of sound wave-trapping barriers. J. Acoust. Soc. Am. 2013, 134, 1960–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowker, G.E.; Baldauf, R.; Isakov, V.; Khlystov, A.; Petersen, W. The effects of roadside structures on the transport and dispersion of ultrafine particles from highways. Atmos. Environ. 2007, 41, 8128–8139. [Google Scholar] [CrossRef]
- Hagler, G.S.; Lin, M.Y.; Khlystov, A.; Baldauf, R.W.; Isakov, V.; Faircloth, J.; Jackson, L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 2012, 419, 7–15. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Amini, S.; Ahangar, F.E.; Schulte, N.; Venkatram, A. Using models to interpret the impact of roadside barriers on near-road air quality. Atmos. Environ. 2016, 138, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, R.; Thoma, E.; Khlystov, A.; Isakov, V.; Bowker, G.; Long, T.; Snow, R. Impacts of noise barriers on near-road air quality. Atmos. Environ. 2008, 42, 7502–7507. [Google Scholar] [CrossRef]
- Heist, D.K.; Perry, S.G.; Brixey, L.A. A wind tunnel study of the effect of roadway configurations on the dispersion of traffic-related pollution. Atmos. Environ. 2009, 43, 5101–5111. [Google Scholar] [CrossRef]
- Steffens, J.T.; Heist, D.K.; Perry, S.G.; Zhang, K.M. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions. Atmos. Environ. 2013, 69, 76–85. [Google Scholar] [CrossRef]
- Lindman, J.K. Effect of a noise wall on snow accumulation and air quality. Transp. Res. Rec. 1985, 1033, 79–88. [Google Scholar]
- Manbachi, A.; Cobbold, R.S.C. Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection. Ultrasound 2011, 19, 187–196. [Google Scholar] [CrossRef]
- Gautschi, G. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers; Springer Science & Business Media: Berlin, Germany, 2002; ISBN 978-3-662-04732-3. [Google Scholar]
- Walubita, L.F.; Sohoulande Djebou, D.C.; Faruk, A.N.; Lee, S.I.; Dessouky, S.; Hu, X. Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting. Sustainability 2018, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Jang, G.G.; Wiechert, A.I.; Ladshaw, A.P.; Spano, T.; McFarlane, J.; Myhre, K.; Yiacoumi, S.; Tsouris, C. Surface charge of environmental and radioactive airborne particle. Atmos. Chem. Phys. Discuss. 2021, 1–14. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yiacoumi, S.; Tsouris, C. Surface charge accumulation of particles containing radionuclides in open air. J. Environ. Radioact. 2015, 143, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gu, Z.; Yu, C.; Zhang, Y.; Cheng, Y. Surface charges on aerosol particles—Accelerating particle growth rate and atmospheric pollution. Indoor Built Environ. 2016, 25, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Rende, D.; Schadler, L.S.; Ozisik, R. Controlling Foam Morphology of Poly(methyl methacrylate) via Surface Chemistry and Concentration of Silica Nanoparticles and Supercritical Carbon Dioxide Process Parameters. J. Chem. 2013, 2013, 864926. [Google Scholar] [CrossRef]
- Wang, K.; Yan, X. Performance analysis of ethylene-propylene diene monomer sound-absorbing materials based on image processing recognition. EURASIP J. Image Video Process. 2018, 2018, 128. [Google Scholar] [CrossRef]
- Athawale, A.A.; Joshi, A.M. Electronic Applications of Ethylene Propylene Diene Monomer Rubber and Its Composites. In Flexible and Stretchable Electronic Composites; Ponnamma, D., Sadasivuni, K.K., Wan, C., Thomas, S., AlMa’adeed, M.A.A., Eds.; Springer: Coventry, UK, 2015; pp. 305–333. ISBN 978-3-319-23663-6. [Google Scholar]
- Bizhani, H.; Katbab, A.A.; Lopez-Hernandez, E.; Miranda, J.M.; Lopez-Manchado, M.A.; Verdejo, R. Preparation and Characterization of Highly Elastic Foams with Enhanced Electromagnetic Wave Absorption Based On Ethylene-Propylene-Diene-Monomer Rubber Filled with Barium Titanate/Multiwall Carbon Nanotube Hybrid. Polymers 2020, 12, 2278. [Google Scholar] [CrossRef]
- Dai, C.; Wu, J.; Zhou, G.; Miao, L.; Yin, Y. Effect of AC Electric Field on Space Charge Distribution in Ethylene Propylene Diene Monomer. In Proceedings of the 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Richland, WA, USA, 20–23 October 2019; pp. 450–453. [Google Scholar]
- Noh, J.S. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters. Polymers 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Romay, F.J.; Liu, B.Y.; Chae, S.J. Experimental Study of Electrostatic Capture Mechanisms in Commercial Electret Filters. Aerosol Sci. Technol. 1998, 28, 224–234. [Google Scholar] [CrossRef]
- Han, C.B.; Jiang, T.; Zhang, C.; Li, X.; Zhang, C.; Cao, X.; Wang, Z.L. Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter. ACS Nano 2015, 9, 12552–12561. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Yoon, K.Y.; Noh, K.C.; Byeon, J.H.; Hwang, J. Removal of PM 2.5 entering through the ventilation duct in an automobile using a carbon fiber ionizer-assisted cabin air filter. J. Aerosol Sci. 2010, 41, 935–943. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, M.; Thomas, S.V.; Wei, H.; Wang, J.; Reponen, T.A.; Ryan, P.H.; Shi, D. Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM. Energies 2022, 15, 4935. https://doi.org/10.3390/en15144935
Lyu M, Thomas SV, Wei H, Wang J, Reponen TA, Ryan PH, Shi D. Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM. Energies. 2022; 15(14):4935. https://doi.org/10.3390/en15144935
Chicago/Turabian StyleLyu, Mengyao, Som V. Thomas, Heng Wei, Julian Wang, Tiina A. Reponen, Patrick H. Ryan, and Donglu Shi. 2022. "Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM" Energies 15, no. 14: 4935. https://doi.org/10.3390/en15144935
APA StyleLyu, M., Thomas, S. V., Wei, H., Wang, J., Reponen, T. A., Ryan, P. H., & Shi, D. (2022). Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM. Energies, 15(14), 4935. https://doi.org/10.3390/en15144935