Abnormal Phenomena and Mathematical Model of Fluid Imbibition in a Capillary Tube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Equipment
2.2. Experimental Methods
3. Results and Discussion
3.1. Liquid-Displacing-Air
3.2. Water-Displacing-Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Characteristic Parameter n
References
- Liang, T.; Zhao, X.; Yuan, S.; Zhu, J.; Liang, X.; Li, X.; Zhou, F. Surfactant-EOR in tight oil reservoirs: Current status and a systematic surfactant screening method with field experiments. J. Pet. Sci. Eng. 2021, 196, 108097. [Google Scholar] [CrossRef]
- Sun, L.; Zou, C.; Jia, A.; Wei, Y.; Zhu, R.; Wu, S.; Guo, Z. Development characteristics and orientation of tight oil and gas in China. Pet. Explor. Dev. 2019, 46, 1073–1087. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Z.; Liu, Q.; Chen, X.; Opoku Appau, P.; Wang, F. Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion. Energies 2018, 11, 2667. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.J. What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs? J. Pet. Sci. Eng. 2017, 159, 635–643. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, G.; Yang, Z.; Tao, S.; Hou, L.; Zhu, R.; Yuan, X.; Ran, Q.; Li, D.; Wang, Z. Concepts, characteristics, potential and technology of unconventional hydrocarbons: On unconventional petroleum geology. Pet. Explor. Dev. 2013, 40, 413–428. [Google Scholar] [CrossRef]
- Mason, G.; Morrow, N.R. Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 2013, 110, 268–293. [Google Scholar] [CrossRef]
- Lucas, R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift 1918, 23, 15–22. [Google Scholar] [CrossRef]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273. Available online: https://journals.aps.org/pr/abstract/10.1103/PhysRev.17.273 (accessed on 9 November 2021). [CrossRef]
- Zhang, J.; Sun, Z.; Wang, X.; Kang, X. Study on the Oil Displacement Effect and Application of Soft Microgel Flooding Technology. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, event canceled, 28 November–1 December 2021. [Google Scholar]
- Qin, T.; Fenter, P.; AlOtaibi, M.; Ayirala, S.; AlYousef, A. Pore-Scale Oil Connectivity and Displacement by Controlled-Ionic-Composition Water-flooding Using Synchrotron X-ray Microtomography. SPE J. 2021, 26, 3694–3701. [Google Scholar] [CrossRef]
- Mirzaei-Paiaman, A.; Masihi, M. Scaling Equations for Oil/Gas Recovery from Fractured Porous Media by Counter-Current Spontaneous Imbibition: From Development to Application. Energy Fuels 2013, 27, 4662–4676. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J. A mathematical model for co-current spontaneous water imbibition into oil-saturated tight sandstone: Up-scaling from pore-scale to core-scale with fractal approach. J. Pet. Sci. Eng. 2019, 178, 376–388. [Google Scholar] [CrossRef]
- Li, C.; Shen, Y.; Ge, H.; Zhang, Y.; Liu, T. Spontaneous imbibition in fractal tortuous micro-nano pores considering dynamic contact angle and slip effect: Phase portrait analysis and analytical solutions. Sci. Rep. 2018, 8, 3919. [Google Scholar] [CrossRef] [PubMed]
- Hilpert, M. Effects of dynamic contact angle on liquid infiltration into horizontal capillary tubes: (Semi)-analytical solutions. J. Colloid Interface Sci. 2009, 337, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Hilpert, M. Effects of dynamic contact angle on liquid infiltration into inclined capillary tubes: (Semi)-analytical solutions. J. Colloid Interface Sci. 2009, 337, 138–144. [Google Scholar] [CrossRef]
- Soares, E.J.; Carvalho, M.S.; Mendes, P.R.S. Immiscible Liquid-Liquid Displacement in Capillary Tubes. J. Fluids Eng. 2005, 127, 24–31. [Google Scholar] [CrossRef]
- Yang, W.; Fu, C.; Du, Y.; Xu, K.; Balhoff, M.T.; Weston, J.; Lu, J. Dynamic Contact Angle Reformulates Pore-Scale Fluid-Fluid Displacement at Ultralow Interfacial Tension. SPE J. 2021, 26, 1278–1289. [Google Scholar] [CrossRef]
- Tian, W.; Wu, K.; Chen, Z.; Lai, L.; Gao, Y.; Li, J. Effect of Dynamic Contact Angle on Spontaneous Capillary-Liquid-Liquid Imbibition by Molecular Kinetic Theory. SPE J. 2021, 26, 2324–2339. [Google Scholar] [CrossRef]
- Sugar, A.; Torrealba, V.; Buttner, U.; Hoteit, H. Assessment of Polymer-Induced Clogging Using Microfluidics. SPE J. 2021, 26, 3793–3804. [Google Scholar] [CrossRef]
- Xu, K.; Liang, T.; Zhu, P.; Qi, P.; Lu, J.; Huh, C.; Balhoff, M. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media. Lab on a Chip. R. Soc. Chem. 2017, 17, 640–646. [Google Scholar]
- Han, A.; Mondin, G.; Hegelbach, N.G.; de Rooij, N.F.; Staufer, U. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J. Colloid Interface Sci. 2006, 293, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.-J.; Yao, T.-J.; Tai, Y.-C. The marching velocity of the capillary meniscus in a microchannel. J. Micromech. Microeng. 2004, 14, 220–225. [Google Scholar] [CrossRef]
- Yang, D.; Krasowska, M.; Priest, C.; Ralston, J. Dynamics of capillary-driven liquid–liquid displacement in open microchannels. Phys. Chem. Chem. Phys. 2014, 16, 24473–24478. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Krasowska, M.; Priest, C.; Popescu, M.N.; Ralston, J. Dynamics of Capillary-Driven Flow in Open Microchannels. J. Phys. Chem. C 2011, 115, 18761–18769. [Google Scholar] [CrossRef]
- Chen, T. Capillary force-driven fluid flow of a wetting liquid in open grooves with different sizes. In Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); IEEE: Orlando, FL, USA, 2014; pp. 388–396. [Google Scholar]
- Deng, Y.; Li, J.; Meng, J.; Cao, Y.; Zhao, L.; Zhao, J. Study on Marine Pipelines Forced Vibration and Vortex-Induced Vibration in Uniform flow and Combined Flow at Different Reynolds Number. In Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20–25 June 2021. [Google Scholar]
- Tian, W.T.; Wu, K.; Chen, Z.; Gao, Y.; Gao, Y.; Li, J. Inertial Effect on Spontaneous Oil-Water Imbibition by Molecular Kinetic Theory. In Proceedings of the SPE Europec Featured at 82nd EAGE Conference and Exhibition, Amsterdam, The Netherlands, 18–21 October 2021; The Society of Petroleum Engineers (SPE): Dallas, TX, USA, 2021. [Google Scholar]
Property | Value | |
---|---|---|
Viscosity of DI-water | 1.0 mPa·s | |
Viscosity of kerosene | 2.2 mPa·s | |
Surface tension between DI-water and air | 66.5 mN/m | |
Surface tension between kerosene and air | 24.0 mN/m | |
Interfacial tension between kerosene and DI-water | 20.9 mN/m | |
The contact Angle between DI-water and air in the single channel | 79.8 ± 1.4° | |
The contact Angle between kerosene and air in the single channel | 67.0° ± 1.2 | |
The contact Angle between kerosene and DI-water in the single channel | 0.3 × 10.60 mm | 87.9° |
0.5 × 15.00 mm | 86.2° | |
0.5 × 19.25 mm | 83.5° | |
0.6 × 20.67 mm | 82.3° |
0.3 × 10.60 mm | 0.5 × 15.00 mm | 0.6 × 20.67 mm | |
---|---|---|---|
a | −18.50 | −21.07 | −34.08 |
b | 13.63 | 14.19 | 24.12 |
0.3 × 10.60 mm | 0.5 × 15.00 mm | 0.6 × 20.67 mm | |
---|---|---|---|
(or b) | 13.63 | 14.19 | 24.12 |
1.34 | 1.28 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Liang, T.; Yuan, S.; Zhou, F.; Li, J. Abnormal Phenomena and Mathematical Model of Fluid Imbibition in a Capillary Tube. Energies 2022, 15, 4994. https://doi.org/10.3390/en15144994
Deng W, Liang T, Yuan S, Zhou F, Li J. Abnormal Phenomena and Mathematical Model of Fluid Imbibition in a Capillary Tube. Energies. 2022; 15(14):4994. https://doi.org/10.3390/en15144994
Chicago/Turabian StyleDeng, Wenquan, Tianbo Liang, Shuai Yuan, Fujian Zhou, and Junjian Li. 2022. "Abnormal Phenomena and Mathematical Model of Fluid Imbibition in a Capillary Tube" Energies 15, no. 14: 4994. https://doi.org/10.3390/en15144994
APA StyleDeng, W., Liang, T., Yuan, S., Zhou, F., & Li, J. (2022). Abnormal Phenomena and Mathematical Model of Fluid Imbibition in a Capillary Tube. Energies, 15(14), 4994. https://doi.org/10.3390/en15144994