A Cooperative ADRC-Based Approach for Angular Velocity Synchronization and Load-Sharing in Servomechanisms
Abstract
:1. Introduction
Contributions
- We propose a novel robust cooperative control of an EMSN constituted of nonidentical brushed DC motors where only the motors’ angular velocity measurements are available.
- The key idea behind the proposed approach is that the actuation provided by the motor needs to handle the total disturbance associated with unknown parameters, unknown dynamics, or an external torque load to achieve the velocity tracking task. It also needs to handle the interaction between both motors cooperatively to share the load and the disturbance rejection.
- The information exchange in the cooperative control utilizes the physical communication network and digital communication between controller modules to achieve torque sharing using an agreement-like algorithm in the ADRC.
- We proved the input-to-state stability (ISS) properties of the closed-loop system.
- We scrutinized the closed-loop system’s effectiveness and advantages through real-time experiments in a controlled and instrumented set-up.
- A rigorous assessment of the robustness and tracking performance towards unexpectedly changing the load disturbance and parameter uncertainties was carried out.
- The proposed algorithm is suitable for embedded use due to its simplicity. It can be applied to a broad spectrum of mechatronic systems where dual-motor drive arrangements are necessary.
2. Preliminaries
2.1. Differential Flatness
2.2. Input-to-State Stability (ISS)
- It is ISS.
- It admits an ISS-Lyapunov function.
- It is robustly stable.
3. System’s Mathematical Model
Differential Flatness-Based Parameterization for the Servomechanism
4. Decentralized Active Disturbance Rejection Controller Design
- (a)
- Only the flat outputs are measured, for .
- (b)
- The nominal values of the set are known for .
- (c)
- The control inputs are available, for .
- (d)
- The disturbances functions () are uniformly absolutely bounded, i.e., for .
- (e)
- The disturbance estimation will be denoted by for .
- (f)
- The estimated variables of the flat outputs, and their successive derivatives, will be denoted by and , which correspond to the estimated and , respectively, and for .
ESO Design for the Decentralized ADR Controller
5. Experimental Results
Robustness Evaluation against Parameter Uncertainties
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Closed–Loop Stability Analysis
References
- Peña Ramirez, J.; Olvera, L.A.; Nijmeijer, H.; Alvarez, J. The sympathy of two pendulum clocks: Beyond Huygens’ observations. Sci. Rep. 2016, 6, 1–16. [Google Scholar]
- Alvarez, J.; Cuesta, R.; Rosas, D. Robust output synchronization of second-order systems. Eur. Phys. J. Spec. Top. 2014, 223, 757–772. [Google Scholar] [CrossRef]
- Ahmed, N.; Cortes, J.; Martinez, S. Distributed Control and Estimation of Robotic Vehicle Networks: Overview of the Special Issue. IEEE Control. Syst. 2016, 36, 36–40. [Google Scholar]
- Guerrero-Castellanos, J.F.; Vega-Alonzo, A.; Marchand, N.; Durand, S.; Linares-Flores, J.; Mino-Aguilar, G. Real-time event-based formation control of a group of VTOL-UAVs. In Proceedings of the 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP), Maderia, Portugal, 24–26 May 2017; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.; Song, C.; Kim, H. Cooperative control of the motor and the electric booster brake to improve the stability of an in-wheel electric vehicle. Int. J. Automot. Technol. 2016, 17, 447–456. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, L.; Xiao, Y.; He, J. Sliding mode variable structure-based multi-shaft synchronous control method and its application in printing press. In Proceedings of the 2013 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 12–14 June 2013; pp. 1082–1086. [Google Scholar]
- Ren, W.; Beard, R.W. Distributed Consensus in Multi-Vehicle Cooperative Control; Springer: London, UK, 2008. [Google Scholar]
- Lewis, F.L.; Zhang, H.; Hengster-Movric, K.; Das, A. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches; Springer: London, UK, 2013. [Google Scholar]
- Milnes, H.; Gilbert, J. Precise synchronization of high-speed DC motors. Int. J. Control. 1981, 33, 985–989. [Google Scholar] [CrossRef]
- Michael, C.; Safacas, A. Behavior of a drive system consisting of two DC motors with elastic shafts driving the Yankee drying cylinder of a tissue paper machine. In Proceedings of the 4th International Power Electronics and Motion Control Conference, Xi’an, China, 14–16 August 2004; Volume 3, pp. 1460–1465. [Google Scholar]
- Michael, C.A.; Safacas, A.N. Dynamic and Vibration Analysis of a Multimotor DC Drive System With Elastic Shafts Driving a Tissue Paper Machine. IEEE Trans. Ind. Electron. 2007, 54, 2033–2046. [Google Scholar] [CrossRef]
- Iyer, J.; Chapariha, M.; Tabarraee, K.; Gougani, M.; Jatskevich, J. Load sharing in V/F speed controlled multi-motor driven system under mechanical wheel-slippage. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Aström, K.; Murray, R. Feedback Systems: An Introduction for Scientists and Engineers; Princeton University Press: Princeton, UK; Oxford, UK, 2008. [Google Scholar]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Krstic, M.; Kanellakopoulos, I.; Kokotovic, P.V. Nonlinear and Adaptive Control Design; John Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Cuong, N.D.; Puta, H. Design of MRAS based control systems for load sharing of two DC motors with a common stiff shaft. In Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS), Nha Trang, Vietnam, 25–28 November 2013; pp. 272–277. [Google Scholar] [CrossRef]
- Arnez-Paniagua, V.; Rifaï, H.; Mohammed, S.; Amirat, Y. Adaptive Control of an Actuated Ankle Foot Orthosis for Foot-Drop Correction. Int. Fed. Autom. Control. 2017, 50, 1384–1389. [Google Scholar] [CrossRef]
- Wang, M.; Ren, X.; Chen, Q. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance. ISA Trans. 2018, 72, 147–160. [Google Scholar] [CrossRef]
- Sira-Ramirez, H. Delta-Sigma Modulation; Birkhäuser: Basel, Switzerland, 2015; pp. 89–125. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, C.; Xiao, M.; He, J.; Liu, Z.; Yang, X.; Zhang, Q.; Chen, H. Collaborative Control of Multimotor Systems for Fixed-Time Optimisation Based on Virtual Main-Axis Speed Compensation Structure. Complexity 2021, 2021, 4113022. [Google Scholar]
- Huang, Z.; Li, Y.; Song, G.; Zhang, X.; Zhang, Z. Speed and Phase Adjacent Cross-Coupling Synchronous Control of Multi-Exciters in Vibration System Considering Material Influence. IEEE Access 2019, 7, 63204–63216. [Google Scholar] [CrossRef]
- Fischer, C.; Brandtstadter, H.; Utkin, V.; Buss, M. Cost functional minimizing sliding mode control design. In Proceedings of the IEEE Conference on Computer Aided Control System Design, Munich, Germany, 4–6 October 2006; pp. 990–995. [Google Scholar]
- Yang, J.; Liang, D.; Yu, D.; Lang, T.Y.F. System identification and sliding mode control design for electromechanical actuator with harmonic gear drive. In Proceedings of the Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 5641–5645. [Google Scholar] [CrossRef]
- Shang, W.; Zhang, B.; Zhang, B.; Zhang, F.; Cong, S. Synchronization Control in the Cable Space for Cable-Driven Parallel Robots. IEEE Trans. Ind. Electron. 2019, 66, 4544–4554. [Google Scholar] [CrossRef]
- Chan, L.; Naghdy, F.; Stirling, D. Extended active observer for force estimation and disturbance rejection of robotic manipulators. Robot. Auton. Syst. 2013, 61, 1277–1287. [Google Scholar] [CrossRef]
- Xue, W.; Huang, Y.; Gao, Z. On ADRC for non-minimum phase systems: Canonical form selection and stability conditions. Control. Theory Technol. 2016, 14, 199–208. [Google Scholar] [CrossRef]
- Mehdi, H.; Boubaker, O. Robust Impedance Control-Based Lyapunov-Hamiltonian Approach for Constrained Robots. Int. J. Adv. Robot. Syst. 2015, 12, 190. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yang, Z.; Han, C.; Liu, H. Disturbance-observer based control for magnetically suspended wheel with synchronous noise. Control. Eng. Pract. 2018, 72, 83–89. [Google Scholar] [CrossRef]
- Sira-Ramírez, H.; Luviano-Juárez, A.; Ramírez-Neria, M.; Zurita-Bustamante, E.W. Active Disturbance Rejection Control of Dynamic Systems: A Flatness-Based Approach; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Fuentes, G.A.R.; Cortés-Romero, J.A.; Zou, Z.; Costa-Castelló, R.; Zhou, K. Power active filter control based on a resonant disturbance observer. IET Power Electron. 2015, 8, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Li, Y.; Zhang, W.; Wang, N.; Xue, W. Active disturbance rejection control for a flywheel energy storage system. IEEE Trans. Ind. Electron. 2015, 62, 991–1001. [Google Scholar] [CrossRef]
- Huang, H.; Wu, L.; Han, J.; Feng, G.; Lin, Y. A new synthesis method for unit coordinated control system in thermal power plant-ADRC control scheme. In Proceedings of the 2004 International Conference on Power System Technology, 2004. PowerCon 2004, Singapore, 21–24 November 2004; Volume 1, pp. 133–138. [Google Scholar]
- Sira-Ramírez, H.; Hernández-Méndez, A.; Linares-Flores, J.; Luviano-Juarez, A. Robust flat filtering DSP based control of the boost converter. Control. Theory Technol. 2016, 14, 224–236. [Google Scholar] [CrossRef]
- Sira-Ramírez, H.; Linares-Flores, J.; García-Rodríguez, C.; Contreras-Ordaz, M. On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach. Trans. Control. Syst. Technol. 2014, 22, 2056–2066. [Google Scholar] [CrossRef]
- Linares-Flores, J.; García-Rodríguez, C.; Sira-Ramírez, H.; Ramírez-Cárdenas, O. Robust Backstepping Tracking Controller for Low-Speed PMSM Positioning System: Design, Analysis, and Implementation. Trans. Ind. Inform. 2015, 11, 1130–1141. [Google Scholar] [CrossRef]
- Linares-Flores, J.; Sira-Ramírez, H.; Barahona-Avalos, J.L.; Contreras-Ordaz, M. Robust Passivity-Based Control of a Buck–Boost-Converter/DC-Motor System: An Active Disturbance Rejection Approach. Trans. Ind. Appl. 2012, 48, 2362–2371. [Google Scholar] [CrossRef]
- Hernandez-Méndez, A.; Linares-Flores, J.; Sira-Ramírez, H.; Guerrero-Castellanos, J.; Mino-Aguilar, G. A Backstepping Approach to Decentralized Active Disturbance Rejection Control of Interacting Boost Converters. Trans. Ind. Appl. 2017, 53, 4063–4072. [Google Scholar] [CrossRef]
- Whitehead, A.; Hilton, C. Protean Electric’s in-Wheel Motors Could Make EVs More Efficient; Technical report; IEEE Spectrum: New York, NY, USA, 2018. [Google Scholar]
- Chen, Q.; Dong, F.; Tao, L.; Nan, Y. Multiple motors synchronization based on active disturbance rejection control with improved adjacent coupling. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 4510–4516. [Google Scholar]
- Yao, S.; Gao, G.; Gao, Z.; Li, S. Active disturbance rejection synchronization control for parallel electro-coating conveyor. ISA Trans. 2020, 101, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Gao, G.; Gao, Z. On multi-axis motion synchronization: The cascade control structure and integrated SMC–ADRC design. ISA Trans. 2021, 109, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Linares-Flores, J.; Hernández-Méndez, A.; Guerrero-Castellanos, J.F.; Mino-Aguilar, G.; Espinosa-Maya, E.; Zurita-Bustamante, E.W. Decentralized ADR angular speed control for load sharing in servomechanisms. In Proceedings of the IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 22–23 February 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Linares-Flores, J.; Sira-Ramirez, H. DC motor velocity control through a DC-to-DC power converter. In Proceedings of the 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), Nassau, Bahamas, 14–17 December 2004; Volume 5, pp. 5297–5302. [Google Scholar] [CrossRef]
- Sira-Ramirez, H.; Agrawal, S.K. Differentially Flat Systems; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sontag, E.D.; Wang, Y. On characterizations of the input-to-state stability property. Syst. Control. Lett. 1995, 24, 351–359. [Google Scholar] [CrossRef]
- Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control. 2004, 49, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Seyboth, G.S.; Dimarogonas, D.V.; Johansson, K.H. Control of multi-agent systems via event-based communication. In Proceedings of the 18th IFAC World Congress, Milan, Italy, 29 August–3 September 2011. [Google Scholar]
- Guerrero-Castellanos, J.; Vega-Alonzo, A.; Durand, S.; Marchand, N.; Gonzalez-Diaz, V.; Castañeda-Camacho, J.; Guerrero-Sánchez, W. Leader-Following Consensus and Formation Control of VTOL-UAVs with Event-Triggered Communications. Sensors 2019, 19, 5498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Heredia, O.; Linares-Flores, J.; García-Rodríguez, C.; Salazar-Oropeza, J.; Ramírez-Cárdenas, O.D.; Heredia-Barba, R. Electronic Differential Based On Active Disturbance Rejection Control For a Four In-Wheel Drive Electric-Vehicle (Go-Kart). In Proceedings of the IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India, 24–26 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Dunkermotoren, 2018. Available online: https://www.dunkermotoren.com (accessed on 13 June 2022).
- Futek. 2022. Available online: https://www.futek.com/home (accessed on 13 June 2022).
- Chiasson, J. Modeling and High Performance Control of Electric Machines; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kia, S.S.; Van Scoy, B.; Cortes, J.; Freeman, R.A.; Lynch, K.M.; Martinez, S. Tutorial on Dynamic Average Consensus: The Problem, Its Applications, and the Algorithms. IEEE Control. Syst. Mag. 2019, 39, 40–72. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol |
---|---|
Angular position of the shaft motor | |
Angular position of the primary gears | |
Angular position of the secondary (load) gear | |
Voltage input | |
Armature current | |
Armature resistance | |
Armature Inductance | |
Moment of inertia of the motor, primary gears, and load gear | |
Torsional damper and stiffness | |
Back emf and motor torque constant | |
Torque load |
Parameter | Symbol | Unit | Value |
---|---|---|---|
Resistor | |||
Inductor | H | 8.9 m | |
Rotor inertia | Kgm | ||
Viscous friction | Nm | 4.1 | |
Back emf | Vs/rad | 49.13 m | |
Torque constant | Nm/A | 49.13 m | |
Rated torque | Nm | 38 m | |
Rated voltage | V | 24 | |
Rated current | A | ||
Rated power | W | ||
Rated speed | rpm | 3600 |
Parameter | Symbol | Unit | Value |
---|---|---|---|
Resistor | |||
Inductor | H | 2.6 m | |
Rotor inertia | Kgm | ||
Viscous friction | Nm | ||
Back emf | Vs/rad | ||
Torque constant | Nm/A | ||
Rated torque | Nm | ||
Rated voltage | V | 48 | |
Rated current | A | ||
Rated power | W | 115 | |
Rated speed | rpm | 6500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Sánchez, W.F.; Linares-Flores, J.; Hernández-Méndez, A.; Gonzalez-Diaz, V.R.; Mino Aguilar, G.; Munoz-Hernandez, G.A.; Guerrero-Castellanos, J.F. A Cooperative ADRC-Based Approach for Angular Velocity Synchronization and Load-Sharing in Servomechanisms. Energies 2022, 15, 5121. https://doi.org/10.3390/en15145121
Guerrero-Sánchez WF, Linares-Flores J, Hernández-Méndez A, Gonzalez-Diaz VR, Mino Aguilar G, Munoz-Hernandez GA, Guerrero-Castellanos JF. A Cooperative ADRC-Based Approach for Angular Velocity Synchronization and Load-Sharing in Servomechanisms. Energies. 2022; 15(14):5121. https://doi.org/10.3390/en15145121
Chicago/Turabian StyleGuerrero-Sánchez, W. Fermin, Jésus Linares-Flores, Arturo Hernández-Méndez, Victor R. Gonzalez-Diaz, Gerardo Mino Aguilar, German A. Munoz-Hernandez, and J. Fermi Guerrero-Castellanos. 2022. "A Cooperative ADRC-Based Approach for Angular Velocity Synchronization and Load-Sharing in Servomechanisms" Energies 15, no. 14: 5121. https://doi.org/10.3390/en15145121
APA StyleGuerrero-Sánchez, W. F., Linares-Flores, J., Hernández-Méndez, A., Gonzalez-Diaz, V. R., Mino Aguilar, G., Munoz-Hernandez, G. A., & Guerrero-Castellanos, J. F. (2022). A Cooperative ADRC-Based Approach for Angular Velocity Synchronization and Load-Sharing in Servomechanisms. Energies, 15(14), 5121. https://doi.org/10.3390/en15145121