Relationships between Combustion Behavior in Air and the Chemical Structure of Bituminous Coal during Combustion Processes
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Coal Chemical Structure Characterization
2.3. TGA Experiment
2.4. Kinetics Analysis
3. Results and Discussion
3.1. Phase Composition of Bituminous Coal
3.2. Combustion Behavior of Bituminous Coal
3.3. Kinetics Analysis
3.4. Relationships between Coal Combustion Parameters and Coal Structure
4. Conclusions
- (1)
- Crystalline and amorphous carbon exist in bituminous coals. The structural parameters, including aromaticity, interlayer spacing, average stacking height, aliphatic chain length, and hydrocarbon-generating potential, vary with the different bituminous coals.
- (2)
- The same weight changes were observed, and the maximum combustion rate decreased with increasing heating rate during the combustion process of bituminous coals. The maximum combustion rate and activation energy reflected an increasing trend when the interlayer spacing and hydrocarbon-generating potential decreased and aromaticity, average stacking height, and aliphatic chain length increased.
- (3)
- Bituminous coal possesses high aromaticity, degree of graphitization, crystalline, long the aliphatic chain length, and weak hydrocarbon-generating potential, which are all valuable for combustion in blast-furnace ironmaking processes.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kurose, R.; Ikeda, M.; Makino, H. Combustion characteristics of high ash coal in a pulverized coal combustion. Fuel 2001, 80, 1447–1455. [Google Scholar] [CrossRef]
- Levendis, Y.A.; Joshi, K.; Khatami, R.; Sarofim, A.F. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combust. Flame 2011, 158, 452–465. [Google Scholar] [CrossRef]
- Khatami, R.; Stivers, C.; Joshi, K.; Levendis, Y.A.; Sarofim, A.F. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combust. Flame 2012, 159, 1253–1271. [Google Scholar] [CrossRef]
- Riaza, J.; Khatami, R.; Levendis, Y.A.; Alvarez, L.; Gil, M.V.; Pevida, C.; Rubiera, F.; Pis, J.J. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust. Flame 2014, 161, 1096–1108. [Google Scholar] [CrossRef] [Green Version]
- Riaza, J.; Gibbins, J.; Chalmers, H. Ignition and combustion of single particles of coal and biomass. Fuel 2017, 202, 650–655. [Google Scholar] [CrossRef]
- Joutsenoja, T.; Saastamoinen, J.; Aho, M.; Hernberg, R. Effects of pressure and oxygen concentration on the combustion of different coals. Energy Fuels 1999, 13, 130–145. [Google Scholar] [CrossRef]
- Field, M. Measurements of the effect of rank on combustion rates of pulverized coal. Combust. Flame 1970, 14, 237–248. [Google Scholar] [CrossRef]
- Tomeczek, J.; Palugniok, H. Kinetics of mineral matter transformation during coal combustion. Fuel 2002, 81, 1251–1258. [Google Scholar] [CrossRef]
- Hurt, R.H.; Mitchell, R.E. (Eds.) Unified high-temperature char combustion kinetics for a suite of coals of various rank. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- McLean, W.; Hardesty, D.; Pohl, J. (Eds.) Direct observations of devolatilizing pulverized coal particles in a combustion environment. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Midkiff, K.C.; Altenkirch, R.A.; Peck, R.E. Stoichiometry and Coal-Type Effects on Homogeneous vs. Heterogeneous Combustion in Pulverized-Coal Flames. Combust. Flame 1986, 64, 253–266. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Zhang, L.A.; Sato, A.; Dong, Z.B. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Process. Technol. 2004, 85, 1065–1088. [Google Scholar] [CrossRef]
- Baum, M.; Street, P. Technology. Predicting the combustion behaviour of coal particles. Combust. Sci. Technol. 1971, 3, 231–243. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, S.; Zhou, X.; Zhu, R.; Qiu, G.; Wu, Y.; Suo, J. Structural Characterization of Four Chinese Bituminous Coals by X-ray Diffraction, Fourier-Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. In Characterization of Minerals, Metals, and Materials 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 11–22. [Google Scholar]
- Sonibare, O.O.; Haeger, T.; Foley, S.F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 2010, 35, 5347–5353. [Google Scholar] [CrossRef]
- Okolo, G.N.; Neomagus, H.W.; Everson, R.C.; Roberts, M.J.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques. Fuel 2015, 158, 779–792. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, S.; Zhu, R.; Wu, Y.; Qiu, G.; Dang, J.; Wen, L.; Hu, M.; Bai, C. Influence of TiO2 addition on the structure and metallurgical properties of coke. Int. J. Coal Prep. Util. 2018, 41, 521–537. [Google Scholar] [CrossRef]
- Lievens, C.; Ci, D.; Bai, Y.; Ma, L.; Zhang, R.; Chen, J.Y.; Gai, Q.; Long, Y.; Guo, X. A study of slow pyrolysis of one low rank coal via pyrolysis–GC/MS. Fuel Process. Technol. 2013, 116, 85–93. [Google Scholar] [CrossRef]
- Gupta, S.; Sahajwalla, V.; Burgo, J.; Chaubal, P.; Youmans, T. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2005, 36, 385–394. [Google Scholar] [CrossRef]
- Gupta, S.; Ye, Z.Z.; Kanniala, R.; Kerkkonen, O.; Sahajwalla, V. Coke graphitization and degradation across the tuyere regions in a blast furnace. Fuel 2013, 113, 77–85. [Google Scholar] [CrossRef]
- Gupta, S.; French, D.; Sakurovs, R.; Grigore, M.; Sun, H.; Cham, T.; Hilding, T.; Hallin, M.; Lindblom, B.; Sahajwalla, V. Minerals and iron-making reactions in blast furnaces. Prog. Energy Combust. Sci. 2008, 34, 155–197. [Google Scholar] [CrossRef]
- Qiu, S.X.; Zhang, S.F.; Wu, Y.; Qiu, G.B.; Sun, C.G.; Zhang, Q.Y.; Dang, J.; Wen, L.; Hu, M.; Xu, J.; et al. Structural transformation of fluid phase extracted from coal matrix during thermoplastic stage of coal pyrolysis. Fuel 2018, 232, 374–383. [Google Scholar] [CrossRef]
- Dutta, S.; Hartkopf-Froder, C.; Witte, K.; Brocke, R.; Mann, U. Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation. Int. J. Coal Geol. 2013, 115, 13–23. [Google Scholar] [CrossRef]
- Miura, K.; Maki, T. A simple method for estimating f(E) and k(0)(E) in the distributed activation energy model. Energy Fuels 1998, 12, 864–869. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.F.; Wang, Y.; Zhang, G.J.; Chen, L. Thermogravimetric study of the kinetics and characteristics of the pyrolysis of lignite. React. Kinet. Mech. Catal. 2013, 110, 225–235. [Google Scholar] [CrossRef]
- Qiu, S.X.; Zhang, S.F.; Zhou, X.H.; Zhang, Q.Y.; Qiu, G.B.; Hu, M.L.; You, Z.; Wen, L.; Bai, C. Thermal behavior and organic functional structure of poplar-fat coal blends during copyrolysis. Renew. Energy 2019, 136, 308–316. [Google Scholar] [CrossRef]
- Wu, X.X.; Radovic, L.R. Catalytic oxidation of carbon/carbon composite materials in the presence of potassium and calcium acetates. Carbon 2005, 43, 333–344. [Google Scholar] [CrossRef]
- Tomita, A. Catalysis of carbon—Gas reactions. Catal. Surv. Jpn. 2001, 5, 17–24. [Google Scholar] [CrossRef]
- Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; van Tendeloo, G. Graphite structural transformations during intercalation by HNO3 and exfoliation. Carbon 2010, 48, 1862–1865. [Google Scholar] [CrossRef]
- Wang, X.M.; Guo, J.J.; Yang, X.W.; Xu, B.S. Monodisperse carbon microspheres synthesized from asphaltene. Mater. Chem. Phys. 2009, 113, 821–823. [Google Scholar] [CrossRef]
- Yu, J.L.; Lucas, J.A.; Wall, T.F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Prog. Energy Combust. Sci. 2007, 33, 135–170. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, S.; Fang, Y.; Qiu, G.; Yin, C.; Reddy, R.; Zhang, Q.; Wen, L. Effects of poplar addition on tar formation during the co-pyrolysis of fat coal and poplar at high temperature. RSC Adv. 2019, 9, 28053–28060. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Lian, W.H.; Li, P.; Zhang, Z.L.; Yang, J.X.; Hao, X.G.; Huang, W.; Guan, G. Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer. Fuel 2017, 207, 126–135. [Google Scholar] [CrossRef]
- Cai, J.M.; Liu, R.H. New distributed activation energy model: Numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour. Technol. 2008, 99, 2795–2799. [Google Scholar] [CrossRef] [PubMed]
Sample | Coal1 | Coal2 | Coal3 | Coal4 | Coal5 | |
---|---|---|---|---|---|---|
Proximate Analysis (%) | Moisture, air dry | 3.05 | 4.07 | 3.58 | 4.12 | 3.36 |
volatile, dry | 24.39 | 26.06 | 27.15 | 25.01 | 25.31 | |
Ash, dry | 8.54 | 6.36 | 4.32 | 7.78 | 8.02 | |
Fixed Carbon, dry | 67.07 | 67.58 | 68.53 | 67.21 | 66.67 |
Samples | Heating Rate (°C min−1) | Ti (°C) | Tf (°C) | Tmax (°C) | (dw/dt)max (% min−1) |
---|---|---|---|---|---|
Coal1 | 5 | 489 | 687 | 589 | 0.492 |
10 | 507 | 834 | 615 | 0.317 | |
15 | 533 | 972 | 634 | 0.260 | |
20 | 547 | - | 637 | 0.194 | |
25 | 553 | - | 642 | 0.172 | |
Coal2 | 5 | 537 | 724 | 630 | 0.538 |
10 | 552 | 847 | 643 | 0.355 | |
15 | 557 | 991 | 650 | 0.256 | |
20 | 591 | - | 685 | 0.219 | |
25 | 597 | - | 700 | 0.167 | |
Coal3 | 5 | 497 | 674 | 587 | 0.585 |
10 | 500 | 820 | 598 | 0.316 | |
15 | 507 | 972 | 603 | 0.248 | |
20 | 543 | - | 632 | 0.202 | |
25 | 554 | - | 656 | 0.182 | |
Coal4 | 5 | 534 | 753 | 550 | 0.499 |
10 | 574 | 875 | 569 | 0.338 | |
15 | 600 | 1044 | 593 | 0.248 | |
20 | 608 | - | 602 | 0.188 | |
25 | 616 | - | 613 | 0.151 | |
Coal5 | 5 | 442 | 642 | 548 | 0.519 |
10 | 464 | 798 | 564 | 0.324 | |
15 | 484 | 1044 | 581 | 0.243 | |
20 | 602 | - | 594 | 0.184 | |
25 | 610 | - | 606 | 0.158 |
Samples | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | Average | Relationship of E and lnA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coal1 | E (kJ mol−1) | 96.266 | 98.205 | 77.639 | 65.360 | 54.526 | 45.455 | 34.917 | 27.971 | 22.200 | 58.060 | lnA = 0.181E-12.902 R2 = 0.998 |
lnA (s−1) | 4.984 | 4.631 | 1.023 | −1.161 | −3.077 | −4.681 | −6.4983 | −7.781 | −8.880 | −2.382 | ||
r2 | 0.913 | 0.981 | 0.985 | 0.987 | 0.993 | 0.991 | 0.973 | 0.953 | 0.947 | 0.969 | ||
Coal2 | E (kJ mol−1) | 223.483 | 175.832 | 136.48 | 100.045 | 79.065 | 58.850 | 47.636 | 35.306 | 27.571 | 98.252 | lnA = 0.159E-12.476 R2 = 0.999 |
lnA (s−1) | 23.219 | 15.186 | 8.956 | 3.385 | 0.101 | −3.024 | −4.855 | −6.837 | −8.175 | 3.106 | ||
r2 | 0.8019 | 0.961 | 0.999 | 0.999 | 0.979 | 0.974 | 0.945 | 0.918 | 0.895 | 0.941 | ||
Coal3 | E (kJ mol−1) | 393.433 | 219.187 | 142.400 | 90.295 | 65.421 | 50.972 | 36.206 | 26.214 | 20.416 | 116.06 | lnA = 0.161E-12.069 R2 = 0.999 |
lnA (s−1) | 51.289 | 23.184 | 10.934 | 2.742 | −1.313 | −3.753 | −6.229 | −7.995 | −9.123 | 6.637 | ||
r2 | 0.905 | 0.900 | 0.966 | 0.978 | 0.984 | 0.973 | 0.963 | 0.934 | 0.916 | 0.947 | ||
Coal4 | E (kJ mol−1) | 104.343 | 98.644 | 82.584 | 71.141 | 57.465 | 47.051 | 38.157 | 29.817 | 23.658 | 61.429 | lnA = 0.169E-12.975 R2 = 0.998 |
lnA (s−1) | 5.007 | 3.553 | 0.867 | −1.088 | −3.27 | −4.966 | −6.476 | −7.878 | −8.965 | −2.58 | ||
r2 | 0.97 | 0.977 | 0.94 | 0.993 | 0.992 | 0.962 | 0.999 | 0.999 | 0.997 | 0.981 | ||
Coal5 | E (kJ mol−1) | 88.279 | 73.396 | 65.233 | 53.789 | 42.908 | 35.211 | 27.97616 | 21.62 | 17.461 | 47.319 | lnA = 0.196E-12.924 R2 = 0.999 |
lnA (s−1) | 4.581 | 1.414 | −0.333 | −2.491 | −4.512 | −5.98 | −7.376 | −8.627 | −9.519 | −3.649 | ||
r2 | 0.962 | 0.976 | 0.96465 | 0.98 | 0.981 | 0.967 | 0.982 | 0.949 | 0.945 | 0.967 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Reddy, R.G.; Huang, X.; Yin, C.; Zhang, S. Relationships between Combustion Behavior in Air and the Chemical Structure of Bituminous Coal during Combustion Processes. Energies 2022, 15, 5154. https://doi.org/10.3390/en15145154
Qiu S, Reddy RG, Huang X, Yin C, Zhang S. Relationships between Combustion Behavior in Air and the Chemical Structure of Bituminous Coal during Combustion Processes. Energies. 2022; 15(14):5154. https://doi.org/10.3390/en15145154
Chicago/Turabian StyleQiu, Shuxing, Ramana G. Reddy, Xianyou Huang, Chen Yin, and Shengfu Zhang. 2022. "Relationships between Combustion Behavior in Air and the Chemical Structure of Bituminous Coal during Combustion Processes" Energies 15, no. 14: 5154. https://doi.org/10.3390/en15145154
APA StyleQiu, S., Reddy, R. G., Huang, X., Yin, C., & Zhang, S. (2022). Relationships between Combustion Behavior in Air and the Chemical Structure of Bituminous Coal during Combustion Processes. Energies, 15(14), 5154. https://doi.org/10.3390/en15145154