Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency
Abstract
:1. Introduction
2. Materials and Method
2.1. Solar Energy Collection and Concentration: NOVA Heliostat-Parabolic System
2.2. Solar Laser Head
3. Theory
Energy Transfer Mechanism between Ce3+ and Nd3+ Ions in YAG
4. Calculation
4.1. Zemax© Simulation
4.2. LASCAD™ Simulation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Collection area (m2) |
c | Radius of curvature (mm) |
I | Solar irradiance (W/m2) |
k | Parabolic constant |
Pabs,ion | Absorbed solar power by ion (W) |
Lc | Length rod (mm) |
LAR-PR | Distance between AR and PR (mm) |
r | Radial aperture (mm) |
R | Reflectivity |
z | Sag (mm) |
Greek symbol | |
αion | Absorption coefficient (cm−1) |
𝛽1 | Aspheric coefficient (mm−1) |
ηoverlap,ion | Overlap efficiency |
ηNR:Ce-Nd | Non-radiative conversion efficiency of Ce3+ to Nd3+ |
λ | Wavelength (nm) |
Abbreviation | |
AR | Anti-reflection |
HR | High reflection |
LASCAD™ | Laser cavity analysis and design |
MSSF | Medium sized solar furnace |
PR | Partial reflection |
RoC | Radius of curvature |
YAG | Yttrium aluminum garnet |
References
- The Global Goals. Goal 7: Affordable and Clean Energy. Available online: https://www.globalgoals.org/goals/7-affordable-and-clean-energy/ (accessed on 1 April 2022).
- The Global Goals. Goal 9: Industry, Innovation and Infrastructure. Available online: https://www.globalgoals.org/goals/9-industry-innovation-and-infrastructure/ (accessed on 1 April 2022).
- Motohiro, T.; Takeda, Y.; Ito, H.; Hasegawa, K.; Ikesue, A.; Ichikawa, T.; Higuchi, K.; Ichiki, A.; Mizuno, S.; Ito, T.; et al. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles. Jpn. J. Appl. Phys. 2017, 56, 08MA07. [Google Scholar] [CrossRef]
- Yabe, T.; Bagheri, B.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Funatsu, T.; Oishi, T.; Daito, K.; Ishioka, M.; Yasunaga, N.; et al. 100 W-class solar pumped laser for sustainable magnesium-hydrogen energy cycle. J. Appl. Phys. 2008, 104, 083104. [Google Scholar] [CrossRef]
- Abdel-Hadi, Y.A. Space-based solar laser system simulation to transfer power onto the earth. NRIAG J. Astron. Geophys. 2020, 9, 558–562. [Google Scholar] [CrossRef]
- Kiss, Z.J.; Lewis, H.R.; Duncan, R.C. Sun pumped continuous optical maser. Appl. Phys. Lett. 1963, 2, 93–94. [Google Scholar] [CrossRef]
- Insuik, R.J.; Christiansen, W.H. Blackbody-pumped CO2 laser experiment. AIAA J. 1984, 22, 1271–1274. [Google Scholar] [CrossRef]
- Terry, C.K.; Peterson, J.E.; Goswami, D.Y. Terrestrial solar-pumped iodine gas laser with minimum threshold concentration requirements. J. Thermophys. Heat Transf. 1996, 10, 54–59. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, K.C.; Kim, K.H. Threshold pump power of a solar-pumped dye laser. Appl. Phys. Lett. 1988, 53, 2021–2022. [Google Scholar] [CrossRef]
- Lando, M.; Kagan, J.; Linyekin, B.; Dobrusin, V. A solar-pumped Nd: YAG laser in the high collection efficiency regime. Opt. Commun. 2003, 222, 371–381. [Google Scholar] [CrossRef]
- Weksler, M.; Shwartz, J. Solar-Pumped Solid-State Lasers. IEEE J. Quantum Electron. 1988, 24, 1222–1228. [Google Scholar] [CrossRef]
- Yabe, T.; Ohkubo, T.; Uchida, S.; Yoshida, K.; Nakatsuka, M.; Funatsu, T.; Mabuti, A.; Oyama, A.; Nakagawa, K.; Oishi, T.; et al. High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium. Appl. Phys. Lett. 2007, 90, 261120. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J. Highly efficient solar-pumped Nd:YAG laser. Opt. Express 2011, 19, 26399–26405. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.H.; Ohkubo, T.; Yabe, T.; Kuboyama, H. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod. Opt. Lett. 2012, 37, 2670–2672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhao, C.; He, J.; Yang, S. Study of active medium for solar-pumped solid-state lasers. Guangxue Xuebao Acta Opt. Sin. 2007, 27, 1797–1801. [Google Scholar]
- Yagi, H.; Yanagitani, T.; Yoshida, H.; Nakatsuka, M.; Ueda, K.-I. Highly Efficient Flashlamp-Pumped Cr3+ and Nd3+ Codoped Y3Al5O12 Ceramic Laser. Jpn. J. Appl. Phys. 2006, 45, 133. [Google Scholar] [CrossRef]
- Payziyev, S.; Makhmudov, K.; Abdel-Hadi, Y.A. Simulation of a new solar Ce:Nd:YAG laser system. Optik 2018, 156, 891–895. [Google Scholar] [CrossRef]
- Liang, D.; Almeida, J.; Guillot, E. Side-pumped continuous-wave Cr:Nd:YAG ceramic solar laser. Appl. Phys. B 2013, 111, 305–311. [Google Scholar] [CrossRef]
- Liang, D.; Vistas, C.R.; Tibúrcio, B.D.; Almeida, J. Solar-pumped Cr:Nd:YAG ceramic laser with 6.7% slope efficiency. Sol. Energy Mater. Sol. Cells 2018, 185, 75–79. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Garcia, D.; Almeida, J.; Tibúrcio, B.D.; Guillot, E. Ce:Nd:YAG continuous-wave solar-pumped laser. Optik 2020, 207, 163795. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Lin, H.; Hou, X.; Li, W. Intense 1064 nm emission by the efficient energy transfer from Ce3+ to Nd3+ in Ce/Nd co-doped YAG transparent ceramics. Opt. Mater. 2010, 32, 1223–1226. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Almeida, J.; Tibúrcio, B.D.; Garcia, D.; Catela, M.; Costa, H.; Guillot, E. Ce:Nd:YAG side-pumped solar laser. J. Photonics Energy 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Vistas, C.R.; Liang, D.; Garcia, D.; Catela, M.; Tibúrcio, B.D.; Costa, H.; Guillot, E.; Almeida, J. Uniform and Non-Uniform Pumping Effect on Ce:Nd:YAG Side-Pumped Solar Laser Output Performance. Energies 2022, 15, 3577. [Google Scholar] [CrossRef]
- Almeida, J.; Liang, D.; Garcia, D.; Tibúrcio, B.D.; Costa, H.; Catela, M.; Guillot, E.; Vistas, C.R. 40 W Continuous Wave Ce:Nd:YAG Solar Laser through a Fused Silica Light Guide. Energies 2022, 15, 3998. [Google Scholar] [CrossRef]
- Guan, Z.; Zhao, C.; Li, J.; He, D.; Zhang, H. 32.1 W/m2 continuous wave solar-pumped laser with a bonding Nd:YAG/YAG rod and a Fresnel lens. Opt. Laser Technol. 2018, 107, 158–161. [Google Scholar] [CrossRef]
- Holloway, W.W.; Kestigian, M. Optical Properties of Cerium-Activated Garnet Crystals. J. Opt. Soc. Am. 1969, 59, 60–63. [Google Scholar] [CrossRef]
- Mares, J.; Jacquier, B.; Pédrini, C.; Boulon, G. Energy transfer mechanisms between Ce3+ and Nd3+ in YAG: Nd, Ce at low temperature. Rev. Phys. Appl. 1987, 22, 145–152. [Google Scholar] [CrossRef]
- Tai, Y.; Zheng, G.; Wang, H.; Bai, J. Near-infrared quantum cutting of Ce3+–Nd3+ co-doped Y3Al5O12 crystal for crystalline silicon solar cells. J. Photochem. Photobiol. A Chem. 2015, 303–304, 80–85. [Google Scholar] [CrossRef]
- Powell, R.C. Physics of Solid-State Laser Materials; Springer: New York, NY, USA, 1998. [Google Scholar]
- ASTM G173-03(2012); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2012.
- Payziyev, S.; Sherniyozov, A.; Bakhramov, S.; Zikrillayev, K.; Khalikov, G.; Makhmudov, K.; Ismailov, M.; Payziyeva, D. Luminescence sensitization properties of Ce: Nd: YAG materials for solar pumped lasers. Opt. Commun. 2021, 499, 127283. [Google Scholar] [CrossRef]
- Ueda, J.; Tanabe, S. (INVITED) Review of luminescent properties of Ce3+-doped garnet phosphors: New insight into the effect of crystal and electronic structure. Opt. Mater. X 2019, 1, 100018. [Google Scholar] [CrossRef]
- Samuel, P.; Yanagitani, T.; Yagi, H.; Nakao, H.; Ueda, K.I.; Babu, S.M. Efficient energy transfer between Ce3+ and Nd3+ in cerium codoped Nd: YAG laser quality transparent ceramics. J. Alloys Compd. 2010, 507, 475–478. [Google Scholar] [CrossRef]
- Yamaga, M.; Oda, Y.; Uno, H.; Hasegawa, K.; Ito, H.; Mizuno, S. Energy transfer from Ce to Nd in Y3Al5O12 ceramics. Phys. Status Solidi C 2012, 9, 2300–2303. [Google Scholar] [CrossRef]
- LAS-CAD GmbH. LASCAD, 3.3.5 Manual; LAS-CAD GmbH: Munchen, Germany, 2007. [Google Scholar]
- Dong, J.; Rapaport, A.; Bass, M.; Szipocs, F.; Ueda, K.-I. Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals. Phys. Status Solidi A 2005, 202, 2565–2573. [Google Scholar] [CrossRef]
Parameters | Guan et al. 2018 [25] | Liang et al. 2018 [19] | Vistas et al. 2021 [22] | This Work 2022 | Improvements Over Previous Record (Times) |
---|---|---|---|---|---|
Primary concentrator | Fresnel lens | Parabolic mirror | Parabolic mirror | Parabolic mirror | - |
Overall efficiency of the collection system | ~45% | 75% | 75% | 75% | - |
Effective collection area | 1.030 m2 | 1.000 m2 | 1.070 m2 | 0.293 m2 | - |
Tracking method | Direct tracking | Via heliostat | Via heliostat | Via heliostat | - |
Solar irradiance | 980 W/m2 | 870 W/m2 | 860 W/m2 | 850 W/m2 | - |
Active medium Pumping method | Nd:YAG/YAG End-side-pump | Cr:Nd:YAG End-side-pump | Ce:Nd:YAG Side-pump | Ce:Nd:YAG End-side-pump | - |
Laser power | 31.1 W | 32.5 W | 16.5 W | 11.2 W | - |
Minimum incoming threshold power | 200 W | 400 W | 220 W | 88 W | 0.44 [25] |
Solar-to-laser conversion efficiency | 3.1% | 3.7% | 2.8% | 4.5% | 1.22 [19] |
Solar laser collection efficiency | 32.1 W/m2 | 32.5 W/m2 | 23.6 W/m2 | 38.22 W/m2 | 1.18 [19] |
Slope efficiency | 5.4% | 6.7% | 4.4% | 6.8% | 1.02 [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, D.; Liang, D.; Vistas, C.R.; Costa, H.; Catela, M.; Tibúrcio, B.D.; Almeida, J. Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency. Energies 2022, 15, 5292. https://doi.org/10.3390/en15145292
Garcia D, Liang D, Vistas CR, Costa H, Catela M, Tibúrcio BD, Almeida J. Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency. Energies. 2022; 15(14):5292. https://doi.org/10.3390/en15145292
Chicago/Turabian StyleGarcia, Dário, Dawei Liang, Cláudia R. Vistas, Hugo Costa, Miguel Catela, Bruno D. Tibúrcio, and Joana Almeida. 2022. "Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency" Energies 15, no. 14: 5292. https://doi.org/10.3390/en15145292
APA StyleGarcia, D., Liang, D., Vistas, C. R., Costa, H., Catela, M., Tibúrcio, B. D., & Almeida, J. (2022). Ce:Nd:YAG Solar Laser with 4.5% Solar-to-Laser Conversion Efficiency. Energies, 15(14), 5292. https://doi.org/10.3390/en15145292