Karlovitz Numbers and Premixed Turbulent Combustion Regimes for Complex-Chemistry Flames
Abstract
:1. Introduction
2. Combustion Regime Boundaries and Karlovitz Numbers: A Historical Overview
3. Differently Defined Karlovitz Numbers
4. Preheat and Reaction Zone Thicknesses of Complex-Chemistry Flames
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 1941, 30, 299–303, [English translation Proc. R. Soc. Lond. A Math. Phys. Sci. 1991, 434, 9–13]. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; The MIT Press: Cambridge, MA, USA, 1975; Volume 2. [Google Scholar]
- Frisch, U. Turbulence. The Legacy of A.N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Tsinober, A. An Informal Conceptual Introduction to Turbulence; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Damköhler, G. Der einfuss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie 1940, 46, 601–652, [in German, English translation NACA TM 1112, 1947]. [Google Scholar]
- Shelkin, K.I. On combustion in a turbulent flow. J. Tech. Phys. USSR 1943, 13, 520–530, [in Russian, English translation NACA TM 1110, 1947]. [Google Scholar]
- Summerfield, M.; Reiter, S.H.; Kebely, V.; Mascolo, R.W. The structure and propagation mechanism of turbulent flames in highspeed flow. J. Jet Propuls. 1955, 25, 377–384. [Google Scholar] [CrossRef]
- Bray, K.N.C. Turbulent flows with premixed reactants. In Turbulent Reacting Flows; Libby, P.A., Williams, F.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1980; pp. 115–183. [Google Scholar]
- Barrere, M. Quelques recherches sur la combustion de la dernière décennie. J. Chim. Phys. 1984, 81, 519–531. [Google Scholar] [CrossRef]
- Borghi, R. On the structure and morphology of turbulent premixed flames. In Recent Advances in Aerospace Science; Casci, S., Bruno, C., Eds.; Plenum: New York, NY, USA, 1985; pp. 117–138. [Google Scholar]
- Borghi, R. Turbulent combustion modeling. Prog. Energy Combust. Sci. 1988, 14, 245–292. [Google Scholar] [CrossRef]
- Williams, F.A. Turbulent combustion. In The Mathematics of Combustion; Buckmaster, J.D., Ed.; SIAM: Philadelphia, PA, USA, 1985; pp. 97–128. [Google Scholar]
- Williams, F.A. Combustion Theory, 2nd ed.; Benjamin/Cummings: Menlo Park, CA, USA, 1985. [Google Scholar]
- Abraham, J.; Williams, F.A.; Bracco, F.V. A Discussion of Turbulent Flame Structure in Premixed Charges; Technical Paper 850345; SAE International: Warrendale, PA, USA, 1985. [Google Scholar] [CrossRef]
- Peters, N. Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 1986, 21, 1231–1249. [Google Scholar] [CrossRef]
- Abdel-Gayed, R.G.; Bradley, D.; Lung, F.K.K. Combustion regimes and the straining of turbulent premixed flames. Combust. Flame 1989, 76, 213–218. [Google Scholar] [CrossRef]
- Poinsot, T.; Veynante, D.; Candel, S. Diagrams of premixed turbulent combustion based on direct simulation. Proc. Combust. Inst. 1990, 23, 613–619. [Google Scholar] [CrossRef]
- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lipatnikov, A.N.; Chomiak, J. Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 2002, 28, 1–74. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Akkerman, V.; Law, C.K. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 2011, 84, 026322. [Google Scholar] [CrossRef]
- Lipatnikov, A.N. Fundamentals of Premixed Turbulent Combustion; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Driscoll, J.F.; Chen, J.H.; Skiba, A.W.; Carter, C.D.; Hawkes, E.R.; Wang, H. Premixed flames subjected to extreme turbulence: Some questions and recent answers. Prog. Energy Combust. Sci. 2020, 76, 100802. [Google Scholar] [CrossRef]
- Bray, K.N.C. Turbulent transport in flames. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1995, 451, 231–256. [Google Scholar]
- Lipatnikov, A.N.; Chomiak, J. Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 2010, 36, 1–102. [Google Scholar] [CrossRef]
- Sabelnikov, V.A.; Lipatnikov, A.N. Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Annu. Rev. Fluid Mech. 2017, 49, 91–117. [Google Scholar] [CrossRef]
- Chakraborty, N. Influence of thermal expansion on fluid dynamics of turbulent premixed combustion and its modelling implications. Flow Turbul. Combust. 2021, 106, 753–848. [Google Scholar] [CrossRef]
- Steinberg, A.M.; Hamlington, P.E.; Zhao, X. Structure and dynamics of highly turbulent premixed combustion. Prog. Energy Combust. Sci. 2021, 85, 100900. [Google Scholar] [CrossRef]
- Lipatnikov, A.N.; Chomiak, J. Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 2005, 31, 1–73. [Google Scholar] [CrossRef]
- Kovasznay, L.C.G. Combustion in turbulent flow. J. Jet Propuls. 1956, 26, 485–497. [Google Scholar]
- Karlovitz, B.; Denniston, D.W.; Knapschaefer, D.H.; Wells, F.E. Studies of turbulent flames. A. Flame propagation across velocity gradients. B. Turbulence measurement in flames. Proc. Combust. Inst. 1953, 4, 613–620. [Google Scholar] [CrossRef]
- Lewis, B.; Von Elbe, G. Combustion, Flames and Explosions of Gases, 2nd ed.; Academic Press Inc.: New York, NY, USA, 1961. [Google Scholar]
- Klimov, A.M. Laminar flame in a turbulent flow. Zhur. Prikl. Mekh. Tekhn. Fiz. 1963, 4, 49–58. [Google Scholar]
- Shetinkov, E.S. Calculation of flame velocity in turbulent stream. Proc. Combust. Inst. 1958, 7, 583–589. [Google Scholar] [CrossRef]
- Shchetinkov, E.S. The Physics of the Combustion of Gases; Nauka: Moscow, Russia, 1965; [in Russian, machinery translation to English FTD-HT-23-496-48]. [Google Scholar]
- Sabelnikov, V.; Lipatnikov, A.; Bai, X.-S.; Swaminathan, N. Turbulent flame structure and dynamics—Combustion regimes: Historical and physical perspective of turbulent combustion. In Advanced Turbulent Combustion Physics and Applications; Swaminathan, N., Bai, X.-S., Haugen, N.E.L., Fureby, C., Brethouwer, G., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 26–44. [Google Scholar]
- Williams, F.A. A review of some theoretical considerations of turbulent flame structure. In Analytical and Numerical Methods for Investigation Flow Fields with Chemical Reactions, Especially Related to Combustion; AGARD Conference Proceedings No. 164; AGARD: Paris, France, 1975; pp. II.1–II.25. [Google Scholar]
- Williams, F.A. Criteria for existence of wrinkled laminar flame structure of turbulent premixed flames. Combust. Flame 1976, 26, 269–270. [Google Scholar] [CrossRef]
- Abdel-Gayed, R.G.; Al-Khishali, K.J.; Bradley, D. Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. Lond. A Math. Phys. Sci. 1984, 391, 393–414. [Google Scholar]
- Driscoll, J.F. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 2008, 34, 91–134. [Google Scholar] [CrossRef]
- Sabelnikov, V.A.; Yu, R.; Lipatnikov, A.N. Thin reaction zones in constant-density turbulent flows at low Damköhler numbers: Theory and simulations. Phys. Fluids 2019, 31, 055104. [Google Scholar] [CrossRef]
- Skiba, A.W.; Carter, C.D.; Hammack, S.D.; Driscoll, J.F. Experimental assessment of the progress variable space structure of premixed flames subjected to extreme turbulence. Proc. Combust. Inst. 2021, 38, 2893–2900. [Google Scholar] [CrossRef]
- Lipatnikov, A.N.; Sabelnikov, V.A. Evaluation of mean species mass fractions in premixed turbulent flames: A DNS study. Proc. Combust. Inst. 2021, 38, 6413–6420. [Google Scholar] [CrossRef]
- Lipatnikov, A.N.; Sabelnikov, V.A.; Hernández-Pérez, F.E.; Song, W.; Im, H.G. A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers. Combust. Flame 2020, 222, 370–382. [Google Scholar] [CrossRef]
- Lipatnikov, A.N.; Sabelnikov, V.A. An extended flamelet-based presumed probability density function for predicting mean concentrations of various species in premixed turbulent flames. Int. J. Hydrogen Energy 2020, 45, 31162–31178. [Google Scholar] [CrossRef]
- Lipatnikov, A.N.; Sabelnikov, V.A.; Hernández-Pérez, F.E.; Song, W.; Im, H.G. Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF. Combust. Flame 2021, 226, 248–259. [Google Scholar] [CrossRef]
- Lipatnikov, A.N.; Nilsson, T.; Yu, R.; Bai, X.S.; Sabelnikov, V.A. Assessment of a flamelet approach to evaluating mean species mass fractions in moderately and highly turbulent premixed flames. Phys. Fluids 2021, 33, 045121. [Google Scholar] [CrossRef]
- Lee, H.C.; Dai, P.; Wan, M.; Lipatnikov, A.N. Influence of molecular transport on burning rate and conditioned species concentrations in highly turbulent premixed flames. J. Fluid Mech. 2021, 928, A5. [Google Scholar] [CrossRef]
- Peters, N. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 1999, 384, 107–132. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Barenblatt, G.I.; Librovich, V.B.; Makhviladze, G.M. The Mathematical Theory of Combustion and Explosions; Consultants Bureau: New York, NY, USA, 1985. [Google Scholar]
- Chen, J.H.; Lumley, J.L.; Gouldin, F.C. Modeling of wrinkled laminar flames with intermittency and conditional statistics. Proc. Combust. Inst. 1986, 21, 1483–1491. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Sreenivasan, K.R. An update of the energy dissipation rate in isotropic turbulence. Phys. Fluids 1998, 10, 528–529. [Google Scholar] [CrossRef]
- Donzis, D.A.; Sreenivasan, K.R.; Yeung, P.K. Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 2005, 532, 199–216. [Google Scholar] [CrossRef]
- Burattini, P.; Lavoie, P.; Antonia, R.A. On the normalized turbulent dissipation range. Phys. Fluids 2005, 17, 098103. [Google Scholar] [CrossRef]
- Vassilicos, J.C. Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 2015, 47, 95–114. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Bilger, R.W. Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—I: Lean hydrogen/air Bunsen flames. Combust. Flame 2004, 138, 155–174. [Google Scholar] [CrossRef]
- Liu, C.C.; Shy, S.S.; Peng, M.W.; Chiu, C.W.; Dong, Y.C. High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers. Combust. Flame 2012, 159, 2608–2619. [Google Scholar] [CrossRef]
- Kheirkhah, S.; Gülder, Ö.L. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front. Phys. Fluids 2013, 25, 055107. [Google Scholar] [CrossRef]
- Carbone, F.; Smolke, J.L.; Fincham, A.M.; Egolfopoulos, F.N. Comparative behavior of piloted turbulent premixed jet flames of C1–C8 hydrocarbons. Combust. Flame 2017, 180, 88–101. [Google Scholar] [CrossRef]
- Dunstan, T.D.; Swaminathan, N.; Bray, K.N.C. Influence of fame geometry on turbulent premixed flame propagation: A DNS investigation. J. Fluid Mech. 2012, 709, 191–222. [Google Scholar] [CrossRef]
- Hawkes, E.R.; Chatakonda, O.; Kolla, H.; Kerstein, A.R.; Chen, J.H. A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 2012, 159, 2690–2703. [Google Scholar] [CrossRef]
- Savard, B.; Blanquart, G. Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 2015, 162, 2020–2033. [Google Scholar] [CrossRef]
- Nilsson, T.; Carlsson, H.; Yu, R.; Bai, X.-S. Structures of turbulent premixed flames in the high Karlovitz number regime—DNS analysis. Fuel 2017, 216, 627–638. [Google Scholar] [CrossRef]
- Kulkarni, T.; Buttay, R.; Kasbaoui, M.H.; Attili, A.; Bisetti, F. Reynolds number scaling of burning rates in spherical turbulent premixed flames. J. Fluid Mech. 2021, 906, A2. [Google Scholar] [CrossRef]
- Rieth, M.; Gruber, A.; Williams, F.A.; Chen, J.H. Enhanced burning rates in hydrogen-enriched turbulent premixed flames by diffusion of molecular and atomic hydrogen. Combust. Flame 2022, 239, 111740. [Google Scholar] [CrossRef]
- Wang, H.; Hawkes, E.R.; Chen, J.H. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame. Combust. Flame 2017, 180, 110–123. [Google Scholar] [CrossRef]
- Dave, H.L.; Mohan, A.; Chaudhuri, S. Genesis and evolution of premixed flames in turbulence. Combust. Flame 2018, 196, 386–399. [Google Scholar] [CrossRef]
- Wang, S.; Elbaz, A.M.; Wang, Z.; Roberts, W.L. The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures. Combust. Flame 2021, 232, 111521. [Google Scholar] [CrossRef]
- Kuenne, G.; Seffrin, F.; Fuest, F.; Stahler, T.; Ketelheun, A.; Geyer, D.; Janicka, J.; Dreizler, A. Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation. Combust. Flame 2012, 159, 2669–2689. [Google Scholar] [CrossRef]
- Zhou, B.; Brackmann, C.; Wang, Z.; Li, Z.; Richter, M.; Aldén, M.; Bai, X.-S. Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: Scalar distributions and correlations. Combust. Flame 2017, 175, 220–236. [Google Scholar] [CrossRef]
- Kazbekov, A.; Steinberg, A.M. Flame- and flow-conditioned vorticity transport in premixed swirl combustion. Proc. Combust. Inst. 2021, 38, 2949–2956. [Google Scholar] [CrossRef]
- Aspden, A.J.; Day, M.S.; Bell, J.B. Lewis number effects in distributed flames. Proc. Combust. Inst. 2011, 33, 1473–1480. [Google Scholar] [CrossRef]
- Aspden, A.J.; Day, M.S.; Bell, J.B. Turbulence-flame interactions in lean premixed hydrogen: Transition to the distributed burning regime. J. Fluid Mech. 2011, 680, 287–320. [Google Scholar] [CrossRef]
- Uranakara, H.A.; Chaudhuri, S.; Dave, H.L.; Arias, P.G.; Im, H.G. A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames. Combust. Flame 2016, 163, 220–240. [Google Scholar] [CrossRef]
- Poludnenko, A.Y. Pulsating instability and self-acceleration of fast turbulent flames. Phys. Fluids 2015, 27, 014106. [Google Scholar] [CrossRef]
- Manias, D.M.; Tingas, E.A.; Hernández Pérez, F.E.; Galassi, R.M.; Ciottoli, P.P.; Valorani, M.; Im, H.G. Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index. Combust. Flame 2019, 200, 155–167. [Google Scholar] [CrossRef]
- Buschmann, A.; Dinkelacker, F.; Schäfer, T.; Schäfer, M.; Wolfrum, J. Measurement of the instantaneous detailed flame structure in turbulent premixed combustion. Proc. Combust. Inst. 1996, 26, 437–445. [Google Scholar] [CrossRef]
- Kim, S.H.; Pitsch, H. Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 2007, 19, 115104. [Google Scholar] [CrossRef]
- Han, I.; Huh, K.Y. Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst. 2009, 32, 1419–1425. [Google Scholar] [CrossRef]
- Nikolaou, Z.M.; Swaminathan, N.; Chen, J.-Y. Evaluation of a reduced mechanism for turbulent premixed combustion. Combust. Flame 2014, 161, 3085–3099. [Google Scholar] [CrossRef]
- Cecere, D.; Giacomazzi, E.; Arcidiacono, N.M.; Picchia, F.R. Direct numerical simulation of a turbulent lean premixed CH4/H2-air slot flame. Combust. Flame 2016, 165, 384–401. [Google Scholar] [CrossRef]
- Luca, S.; Attili, A.; Schiavo, E.L.; Creta, F.; Bisetti, F. On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying Reynolds number. Proc. Combust. Inst. 2019, 37, 2451–2459. [Google Scholar] [CrossRef]
- Girimaji, S.S.; Pope, S.B. Propagating surfaces in isotropic turbulence. J. Fluid Mech. 1990, 220, 247–277. [Google Scholar] [CrossRef]
- Yeung, P.K.; Girimaji, S.S.; Pope, S.B. Straining and scalar dissipation of material surfaces in turbulence: Implications for flamelets. Combust. Flame 1990, 79, 340–365. [Google Scholar] [CrossRef]
- Kee, R.J.; Grcar, J.F.; Smooke, M.D.; Miller, J.A. PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames; Report No. SAND-89-8249; Sandia National Laboratories: Albuquerque, NM, USA, 1985.
- Kee, R.J.; Rupley, F.M.; Miller, J.A. CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics; Report No. SAND-89-8009; Sandia National Laboratories: Albuquerque, NM, USA, 1989.
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, J.W.C.; et al. GRI-Mech 3.0. 1999. Available online: http://combustion.berkeley.edu/gri-mech/version30/text30.html (accessed on 5 May 2022).
- Konnov, A.A. Yet another kinetic mechanism for hydrogen combustion. Combust. Flame 2019, 203, 14–22. [Google Scholar] [CrossRef]
- Chaos, M.; Kazakov, A.; Zhao, Z.; Dryer, F.L. A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 2007, 39, 399–414. [Google Scholar] [CrossRef]
- Huang, C.; Golovitchev, V.; Lipatnikov, A. Chemical Model of Gasoline-Ethanol Blends for Internal Combustion Engine Applications; SAE Paper 2010-01-0543; SAE: Warrendale, PA, USA, 2010. [Google Scholar]
- Williams, F.A. Progress in knowledge of flamelet structure and extinction. Prog. Energy Combust. Sci. 2000, 26, 657–682. [Google Scholar] [CrossRef]
- Jiménez, J.; Wray, A.A.; Saffman, P.G.; Rogallo, R.S. The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 1993, 255, 65–90. [Google Scholar] [CrossRef]
- Tanahashi, M.; Kang, S.-J.; Miyamoto, T.; Shiokawa, S.; Miyauchi, T. Scaling law of fine scale eddies in turbulent channel flows up to . Int. J. Heat Fluid Flow 2004, 25, 331–340. [Google Scholar]
- Ganapathisubramani, B.; Lakshminarasimhan, K.; Clemens, N.T. Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 2008, 598, 141–175. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hagiwara, H.; Kaneko, H.; Ogami, Y. Effects of CO2 dilution on turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 2007, 31, 1451–1458. [Google Scholar] [CrossRef]
- Paes, P.L.K.; Shah, Y.G.; Brasseura, J.G.; Xuan, Y. A scaling analysis for the evolution of small-scale turbulence eddies across premixed flames with implications on distributed combustion. Combust. Theory Model. 2020, 24, 307–325. [Google Scholar] [CrossRef]
- Bobbitt, B.; Lapointe, S.; Blanquart, G. Vorticity transformation in high Karlovitz number premixed flames. Phys. Fluids 2016, 28, 015101. [Google Scholar] [CrossRef]
- Aspden, A.J. A numerical study of diffusive effects in turbulent lean premixed hydrogen flames. Proc. Combust. Inst. 2017, 36, 1997–2004. [Google Scholar] [CrossRef]
- Wabel, T.M.; Skiba, A.W.; Driscoll, J.F. Evolution of turbulence through a broadened preheat zone from conditionally averaged velocity measurements. Combust. Flame 2018, 188, 13–27. [Google Scholar] [CrossRef]
- Boughanem, H.; Trouvé, A. The domain of influence of flame instabilities in turbulent premixed combustion. Proc. Combust. Inst. 1998, 27, 971–978. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Poinsot, T.; Veynante, D.; Candel, S. Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 1991, 228, 561–606. [Google Scholar] [CrossRef]
- Skiba, A.W.; Wabel, T.M.; Carter, C.D.; Hammack, S.; Temme, J.E.; Driscoll, J.F. Premixed flames subjected to extreme levels of turbulence part I: Flame structure and a new measured regime diagram. Combust. Flame 2018, 189, 407–432. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipatnikov, A.N.; Sabelnikov, V.A. Karlovitz Numbers and Premixed Turbulent Combustion Regimes for Complex-Chemistry Flames. Energies 2022, 15, 5840. https://doi.org/10.3390/en15165840
Lipatnikov AN, Sabelnikov VA. Karlovitz Numbers and Premixed Turbulent Combustion Regimes for Complex-Chemistry Flames. Energies. 2022; 15(16):5840. https://doi.org/10.3390/en15165840
Chicago/Turabian StyleLipatnikov, Andrei N., and Vladimir A. Sabelnikov. 2022. "Karlovitz Numbers and Premixed Turbulent Combustion Regimes for Complex-Chemistry Flames" Energies 15, no. 16: 5840. https://doi.org/10.3390/en15165840
APA StyleLipatnikov, A. N., & Sabelnikov, V. A. (2022). Karlovitz Numbers and Premixed Turbulent Combustion Regimes for Complex-Chemistry Flames. Energies, 15(16), 5840. https://doi.org/10.3390/en15165840