Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Methodology
2.1. Model Construction
2.2. Molecular Dynamics Simulation
2.2.1. Force Fields Employed in the Simulations
2.2.2. MD Simulation Details
2.3. Model Validation
3. Results and Discussion
3.1. Density Profiles
3.2. Radial Distribution Functions (RDFs)
3.3. Mean Square Displacement (MSD)
3.4. Self-Diffusion Coefficient and Adsorption Energy
4. Conclusions
- (1)
- Heavy oil forms a denser multilayer adsorption layer on the nanopore surface, and temperature can alter the adsorption behaviors of heavy oil fractions. As the temperature increases, the saturate molecules will be desorbed from the nanopore surface, the aromatic molecules will be aggregated in the adsorption layer, the resin molecules will remain a similar aggregation behavior in the nanopore, and the asphaltene molecules will aggregate towards the nanopore surface.
- (2)
- The confined space of the nanopore will suppress the agglomeration behaviors of the heavy oil molecules. The saturates in nanopore maintain a chain structure, while the saturates in the heavy oil droplet forms some clusters. The aromatics also maintain a similar phenomenon to saturates. Nevertheless, the confined space of nanopore cannot suppress the agglomeration behaviors of resin molecules due to too many chain structures. The agglomeration of resin molecules in both the heavy oil droplet and nanopore gradually disappears with increasing temperatures. The face-to-face stacking of asphaltene molecules in the heavy oil droplet is changed to the side-to-face (twined) stacking in nanopore suggesting that the confined space can decrease the stacking of asphaltene molecules.
- (3)
- The influence of temperature on the movements of heavy oil molecules in a nanopore has a slight decrease compared with the oil molecules in the heavy oil droplet, which suggests that the mobility of heavy oil molecules in a nanopore may be suppressed due to the confined space and adsorption effect.
- (4)
- The adsorption and diffusivity of aromatic, resin, and asphaltene molecules in nanopore exhibit a competitive phenomenon with the increase in temperature, resulting in different adsorption behaviors of heavy oil molecules.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Cao, M.; Cheng, L. Experimental Study on Aquathermolysis of Different Viscosity Heavy Oil with Superheated Steam. Energy Fuels 2018, 32, 4850–4858. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Liu, G. Review on new heavy oil viscosity reduction technologies. IOP Conf. Ser. Earth Environ. Sci. 2022, 983, 012059. [Google Scholar] [CrossRef]
- Wei, Y.; He, X.; Liu, T.; Liu, M.; Li, B.; Wang, Z.; Li, B.; Zhou, X. Study on the Variation of Crude Oil and Flue Gas Components in Flue-Gas-Assisted Steam Flooding. Geofluids 2022, 2022. [Google Scholar] [CrossRef]
- Li, S.; Han, R.; Wang, P.; Cao, Z.; Li, Z.; Ren, G. Experimental investigation of innovative superheated vapor extraction technique in heavy oil reservoirs: A two-dimensional visual analysis. Energy 2022, 238, 121882. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Lu, T.; Li, Z.M.; Wang, F.; Li, S.Y.; Chen, H.L. Analysis of Factors on Flue Gas Assisted SAGD Based on a 2D Visualization Physical Model. Energy Fuels 2021, 35, 14510–14518. [Google Scholar] [CrossRef]
- Fan, J.; He, Z.; Pang, W.; Fu, D.; Peng, H.; Liu, H. Experimental study on the mechanism and development effect of multi-gas assisted steam huff and puff process in the offshore heavy oil reservoirs. J. Pet. Explor. Prod. Technol. 2021, 11, 4163–4174. [Google Scholar] [CrossRef]
- Taheri-Shakib, J.; Keshavarz, V.; Kazemzadeh, E.; Hosseini, S.A.; Rajabi-Kochi, M.; Salimidelshad, Y.; Naderi, H.; Bakhtiari, H.A. Experimental and mathematical model evaluation of asphaltene fractionation based on adsorption in porous media: Part 1. calcite reservoir rock. J. Pet. Sci. Eng. 2019, 177, 24–40. [Google Scholar] [CrossRef]
- Lyu, Y.; Huang, Q.; Liu, L.; Zhang, D.; Xue, H.; Zhang, F.; Zhang, H.; Li, R.; Wang, Q. Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation. Energy 2022, 250, 123811. [Google Scholar] [CrossRef]
- Huang, J.; Stoyanov, S.R.; Zeng, H. A comparison study on adsorption and interaction behaviors of diluted bitumen and conventional crude oil on model mineral surface. Fuel 2019, 253, 383–391. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Ansari, S.; Bahmaninia, H.; Ostadhassan, M.; Norouzi-Apourvari, S.; Hemmati-Sarapardeh, A.; Schaffie, M.; Ranjbar, M. Experimental Measurement and Equilibrium Modeling of Adsorption of Asphaltenes from Various Origins onto the Magnetite Surface under Static and Dynamic Conditions. ACS Omega 2021, 6, 24256–24268. [Google Scholar] [CrossRef]
- Meghwal, B.; Rampal, N.; Malani, A. Investigation of Adhesion between Heavy Oil/Bitumen and Reservoir Rock: A Molecular Dynamics Study. Energy Fuels 2020, 34, 16023–16034. [Google Scholar] [CrossRef]
- Ji, D.; Liu, G.; Zhang, X.; Zhang, C.; Yuan, S. Molecular Dynamics Study on the Adsorption of Heavy Oil Drops on a Silica Surface with Different Hydrophobicity. Energy Fuels 2020, 34, 7019–7028. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, J.; Duan, H.; Luo, H.; Liu, X. Molecular dynamics insight into the adsorption and distribution of bitumen subfractions on Na-montmorillonite surface. Fuel 2022, 310, 122380. [Google Scholar] [CrossRef]
- Liu, F.; Yang, H.; Yang, M.; Wu, J.; Yang, S.; Yu, D.; Wu, X.; Wang, J.; Gates, I.; Wang, J. Effects of molecular polarity on the adsorption and desorption behavior of asphaltene model compounds on silica surfaces. Fuel 2021, 284, 118990. [Google Scholar] [CrossRef]
- Lu, N.; Dong, X.; Chen, Z.; Liu, H.; Zheng, W.; Zhang, B. Effect of solvent on the adsorption behavior of asphaltene on silica surface: A molecular dynamic simulation study. J. Pet. Sci. Eng. 2022, 212, 110212. [Google Scholar] [CrossRef]
- Atilhan, M.; Aparicio, S. Molecular dynamics study on the use of Deep Eutectic Solvents for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2022, 209, 109953. [Google Scholar] [CrossRef]
- Ahmadi, M.; Chen, Z. Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection. Energy 2022, 254, 124434. [Google Scholar] [CrossRef]
- Verstraete, J.J.; Schnongs, P.; Dulot, H.; Hudebine, D. Molecular reconstruction of heavy petroleum residue fractions. Chem. Eng. Sci. 2010, 65, 304–312. [Google Scholar] [CrossRef]
- Murgich, J.; Rodríguez; Aray, Y. Molecular Recognition and Molecular Mechanics of Micelles of Some Model Asphaltenes and Resins. Energy Fuels 1996, 10, 68–76. [Google Scholar] [CrossRef]
- Rogel, E. Asphaltene Aggregation: A Molecular Thermodynamic Approach. Langmuir 2002, 18, 1928–1937. [Google Scholar] [CrossRef]
- Wu, G.; Zhu, X.; Ji, H.; Chen, D. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface. Chemosphere 2015, 119, 242–249. [Google Scholar] [CrossRef]
- Wu, G.; He, L.; Chen, D. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: Molecular dynamic simulation. Chemosphere 2013, 92, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Chen, Z. Spotlight onto surfactant-steam-bitumen interfacial behavior via molecular dynamics simulation. Sci. Rep. 2021, 11, 19660. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Sun, Y.; Wang, S.; Liu, Y.; Cai, J. Analysis of Physical Properties of Heavy Oil in Bohai Sea and Study on De-Velopment Measures. Xinjiang Oil Gas 2020, 16, 70–77. [Google Scholar]
- Lai, J.; Wang, G.; Pang, X.; Fan, X.; Zhou, Z.; Si, Z.; Xie, W.; Qin, Z. Effect of Pore Structure on Reservoir Quality and Oiliness in Paleogene Dongying Formation Sandstones in Nanpu Sag, Bohai Bay Basin, Eastern China. Energy Fuels 2018, 32, 9220–9232. [Google Scholar] [CrossRef]
- Dai, C.; Cheng, R.; Sun, X.; Liu, Y.; Zhou, H.; Wu, Y.; You, Q.; Zhang, Y.; Sun, Y. Oil migration in nanometer to micrometer sized pores of tight oil sandstone during dynamic surfactant imbibition with online NMR. Fuel 2019, 245, 544–553. [Google Scholar] [CrossRef]
- Koretsky, C.M.; Sverjensky, D.A.; Sahai, N. A model of surface site types on oxide and silicate minerals based on crystal chemistry; implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics. Am. J. Sci. 1998, 298, 349–438. [Google Scholar] [CrossRef]
- Martinez, L.; Andrade, R.; Birgin, E.G.; Martinez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Jewett, A.I.; Stelter, D.; Lambert, J.; Saladi, S.M.; Roscioni, O.M.; Ricci, M.; Autin, L.; Maritan, M.; Bashusqeh, S.M.; Keyes, T.; et al. Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. J. Mol. Biol. 2021, 433, 166841. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; McDonald, N.A. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J. Mol. Struct. THEOCHEM 1998, 424, 145–155. [Google Scholar] [CrossRef]
- Dodda, L.S.; Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W.L. LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017, 45, W331–W336. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Feng, Q.; Javadpour, F.; Xia, T.; Li, Z. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. Int. J. Coal Geol. 2015, 147, 9–24. [Google Scholar] [CrossRef]
- Fang, T.; Li, S.; Zhang, Y.; Su, Y.; Yan, Y.; Zhang, J. How the oil recovery in deep oil reservoirs is affected by injected gas types: A molecular dynamics simulation study. Chem. Eng. Sci. 2021, 231, 116286. [Google Scholar] [CrossRef]
- Fang, C.; Yang, Y.; Sun, S.; Qiao, R. Low salinity effect on the recovery of oil trapped by nanopores: A molecular dynamics study. Fuel 2020, 261, 116443. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.-J.; Kalinichev, A.G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Kim, C.; Devegowda, D. Molecular dynamics study of fluid-fluid and solid-fluid interactions in mixed-wet shale pores. Fuel 2022, 319, 123587. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Evans, D.J.; Holian, B.L. The Nose–Hoover thermostat. J. Phys. Chem. C 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.; Xu, M.; Ji, J.; Dai, Q.; You, Z. Discussion on molecular dynamics (MD) simulations of the asphalt materials. Adv. Colloid Interface Sci. 2022, 299, 102565. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Z.; Liu, G.; Yuan, S. Molecular Dynamics Simulation: The Behavior of Asphaltene in Crude Oil and at the Oil/Water Interface. Energy Fuels 2014, 28, 7368–7376. [Google Scholar] [CrossRef]
- Ahmadi, M.; Chen, Z. MD simulations of oil-in-water/water-in-oil emulsions during surfactant-steam co-injection in bitumen recovery. Fuel 2022, 314, 122718. [Google Scholar] [CrossRef]
- Nourozieh, H.; Kariznovi, M.; Abedi, J. Density and Viscosity of Athabasca Bitumen Samples at Temperatures Up to 200 °C and Pressures Up to 10 MPa. SPE Reserv. Eval. Eng. 2015, 18, 375–386. [Google Scholar] [CrossRef]
- Zhan, K.; Fang, W.; Pan, Z.; Teng, G.; Zheng, H.; Zhao, L.; Liu, B. The role of the potential field on occurrence and flow of octane in quartz nanopores. Phys. Chem. Chem. Phys. 2021, 23, 11507–11514. [Google Scholar] [CrossRef]
- Cao, Z.; Jiang, H.; Zeng, J.; Saibi, H.; Lu, T.; Xie, X.; Zhang, Y.; Zhou, G.; Wu, K.; Guo, J. Nanoscale liquid hydrocarbon adsorption on clay minerals: A molecular dynamics simulation of shale oils. Chem. Eng. J. 2021, 420, 127578. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Q.; Wang, S.; Xing, X. Oil diffusion in shale nanopores: Insight of molecular dynamics simulation. J. Mol. Liq. 2019, 290, 111183. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, P.; Zhang, Y.; Yan, Y.; Hu, S.; Zhang, J. Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study. Energy 2013, 59, 295–300. [Google Scholar] [CrossRef]
Species | Charge, q (e) | Energy, ε (kcal/mol) | Distance, σ (Å) |
---|---|---|---|
H(hydroxyl) | 0.4250 | 0.0000 | 0.0000 |
O(hydroxyl) | −0.9500 | 0.1554 | 3.5532 |
O(bridging) | −1.0500 | 0.1554 | 3.5532 |
Si | 2.1000 | 1.8405 × 10−6 | 3.7950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zheng, W.; Wang, T.; Liu, F.; Cheng, T.; Chen, H.; Miao, T. Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study. Energies 2022, 15, 5870. https://doi.org/10.3390/en15165870
Chen D, Zheng W, Wang T, Liu F, Cheng T, Chen H, Miao T. Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study. Energies. 2022; 15(16):5870. https://doi.org/10.3390/en15165870
Chicago/Turabian StyleChen, Dongsheng, Wei Zheng, Taichao Wang, Fan Liu, Tong Cheng, Hengyuan Chen, and Tingting Miao. 2022. "Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study" Energies 15, no. 16: 5870. https://doi.org/10.3390/en15165870
APA StyleChen, D., Zheng, W., Wang, T., Liu, F., Cheng, T., Chen, H., & Miao, T. (2022). Influence of Temperature on the Adsorption and Diffusion of Heavy Oil in Quartz Nanopore: A Molecular Dynamics Study. Energies, 15(16), 5870. https://doi.org/10.3390/en15165870