Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Application of an Energy System Model
2.2. Carrying Out the Life Cycle Assessment
3. Results
3.1. Derived Base Case and Scenarios for Herne Based on ESM Modelling
3.2. LCA Results at Midpoint Level and Endpoint-Level
3.3. Monetization of LCA Endpoint Results
4. Discussion
4.1. Assessment of Input Parameters
- The supplementation of CHP units with peak load boilers could possibly lead to a reduction of the required CHP capacity, while further minimizing the optimization criteria.
- The switch of the nearby district heating power plant in Herne, from coal to gas [72], could have a significant impact on the connection decision. Generally, changes of technology (e.g., technological development in the hydrogen sector) could have significant effects on the model outcome, as this depends on the cost and CO2-intensity of the technologies.
- In the development of neighborhoods, changes regarding the energy demand of households should be considered. For example, the electrification of transport alone is expected to increase the demand for electricity. For long-term optimization, it is therefore advisable to model different demand scenarios and to optimize them. In this context, decreasing energy demand should also be considered, for example due to improved building insulation.
- As the city of Herne does not assess greenhouse gas emissions by district, but only at city level, the results cannot be validated against other results that were calculated by the communal government. Such a validation would be desirable.
4.2. Transferability of the Modelling to Larger Neighborhoods and Recommendations for Further Research
4.3. Assessment of Limitations and Assumptions of the LCA
4.4. Sensitivity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Statista Prognose zur Entwicklung der Weltbevölkerung bis 2100. Available online: https://de.statista.com/statistik/daten/studie/1717/umfrage/prognose-zur-entwicklung-der-weltbevoelkerung/ (accessed on 7 August 2020).
- United Nations-Department of Economic and Social Affairs Population Division. World Urbanization Prospects: 2018: Highlights; United Nations Environment Programme: Nairobi, Kenya, 2019; ISBN 978-92-1-148318-5. [Google Scholar]
- Rode, P.; Burdett, R. Cities: Investing in Energy and Resource Efficiency. In Towards a Green Economy: Pathway to Sustainable Development and Poverty Eradication; United Nations Environment Programme: Nairobi, Kenya, 2011; pp. 453–492. [Google Scholar]
- United Nations Cities: A “Cause of and Solution to” Climate Change. Available online: https://news.un.org/en/story/2019/09/1046662 (accessed on 26 January 2022).
- United Nations Human Settlements Programme. The Value of Sustainable Urbanization-World Cities Report 2020; United Nations Human Settlements Programme, Ed.; United Nations Human Settlements Programme: Nairobi, Kenya, 2020. [Google Scholar]
- GERICS. Cities and Climate Change - Climate-Focus-Paper; GERICS, Ed.; Climate Service Center Germany: Hamburg, Germany, 2015. [Google Scholar]
- SDG Goal 11: Sustainable Cities and Communities. Available online: https://www.globalgoals.org/11-sustainable-cities-and-communities (accessed on 26 January 2022).
- Europäische Kommission Übereinkommen von Paris. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_de (accessed on 7 August 2020).
- ICLEI GreenClimateCities Programm. Available online: https://iclei.org/en/GreenClimateCities.html (accessed on 29 September 2021).
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.-A.; Krook-Riekkola, A.; Olazabal, M.; De Gregorio Hurtado, S.; Simoes, S.G.; Geneletti, D.; et al. Will Climate Mitigation Ambitions Lead to Carbon Neutrality? An Analysis of the Local-Level Plans of 327 Cities in the EU. Renew. Sustain. Energy Rev. 2021, 135, 110253. [Google Scholar] [CrossRef]
- Reckien, D.; Salvia, M.; Heidrich, O.; Church, J.M.; Pietrapertosa, F.; De Gregorio-Hurtado, S.; D’Alonzo, V.; Foley, A.; Simoes, S.G.; Krkoška Lorencová, E.; et al. How Are Cities Planning to Respond to Climate Change? Assessment of Local Climate Plans from 885 Cities in the EU-28. J. Clean. Prod. 2018, 191, 207–219. [Google Scholar] [CrossRef]
- IEA. Market Report Series: Renewables 2018–Analysis; International Energy Agency: Paris, France, 2018. [Google Scholar]
- BMWi. Klimaschutzplan 2050; BMWi: Berlin, Germany, 2022. [Google Scholar]
- REN21. Renewables 2019 Global Status Report; REN21: Paris, France, 2019; ISBN 978-3-9818911-7-1. [Google Scholar]
- BDEW. Wie Heizt Deutschland 2019? BDEW-Studie Zum Heizungsmarkt; BDEW: Berlin, Germany, 2019. [Google Scholar]
- Umweltbundesamt Energieverbrauch für Fossile und Erneuerbare Wärme. Available online: https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme (accessed on 14 September 2020).
- Klemm, C.; Budde, J.; Wittor, Y.; Vennemann, P. Spreadsheet Energy Model Generator (GIT): SESMG. Available online: https://spreadsheet-energy-system-model-generator.readthedocs.io/en/latest/. (accessed on 7 June 2021).
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated Life-Cycle Assessment of Electricity-Supply Scenarios Confirms Global Environmental Benefit of Low-Carbon Technologies. Environ. Sci. 2014, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Arvesen, A.; Luderer, G.; Pehl, M.; Bodirsky, B.L.; Hertwich, E.G. Deriving Life Cycle Assessment Coefficients for Application in Integrated Assessment Modelling. Environ. Model. Softw. 2018, 99, 111–125. [Google Scholar] [CrossRef]
- ISO 14040:2009-11; DIN Umweltmanagement—Ökobilanz—Grundsätze Und Rahmenbedingungen. ISO: Berlin, Germany, 2009.
- ISO 14044:2006 + Amd 1:2017; DIN Umweltmanagement—Ökobilanz—Anforderungen Und Anleitungen. ISO: Berlin, Germany, 2017; Deutsche Fassung EN ISO 14044:2006 + A1:2018 2018.
- Chowdhury, J.I.; Balta-Ozkan, N.; Goglio, P.; Hu, Y.; Varga, L.; McCabe, L. Techno-Environmental Analysis of Battery Storage for Grid Level Energy Services. Renew. Sustain. Energy Rev. 2020, 131, 110018. [Google Scholar] [CrossRef]
- Fthenakis, V.; Raugei, M. 7—Environmental Life-Cycle Assessment of Photovoltaic Systems. In The Performance of Photovoltaic (PV) Systems; Pearsall, N., Ed.; Woodhead Publishing: Wallingford, UK, 2017; pp. 209–232. ISBN 978-1-78242-336-2. [Google Scholar]
- Fu, Y.; Liu, X.; Yuan, Z. Life-Cycle Assessment of Multi-Crystalline Photovoltaic (PV) Systems in China. J. Clean. Prod. 2015, 86, 180–190. [Google Scholar] [CrossRef]
- Greening, B.; Azapagic, A. Domestic Heat Pumps: Life Cycle Environmental Impacts and Potential Implications for the UK. Energy 2012, 39, 205–217. [Google Scholar] [CrossRef]
- Kelly, K.A.; McManus, M.C.; Hammond, G.P. An Energy and Carbon Life Cycle Assessment of Industrial CHP (Combined Heat and Power) in the Context of a Low Carbon UK. Energy 2014, 77, 812–821. [Google Scholar] [CrossRef]
- Yavor, K.M.; Bach, V.; Finkbeiner, M. Resource Assessment of Renewable Energy Systems—A Review. Sustainability 2021, 13, 6107. [Google Scholar] [CrossRef]
- Zabalza, I.; Scarpellini, S.; Aranda, A.; Llera, E.; Jáñez, A. Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain. Energies 2013, 6, 3901–3921. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Rezk, H.; Mustafa, R.J.; Al-Dhaifallah, M. Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study. Energies 2019, 12, 3263. [Google Scholar] [CrossRef]
- Blanco, H.; Codina, V.; Laurent, A.; Nijs, W.; Maréchal, F.; Faaij, A. Life Cycle Assessment Integration into Energy System Models: An Application for Power-to-Methane in the EU. Appl. Energy 2020, 259, 114160. [Google Scholar] [CrossRef]
- Astudillo, M.F.; Vaillancourt, K.; Pineau, P.-O.; Amor, B. Integrating Energy System Models in Life Cycle Management. In Designing Sustainable Technologies, Products and Policies: From Science to Innovation; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer International Publishing: Cham, Swizterland, 2018; pp. 249–259. ISBN 978-3-319-66981-6. [Google Scholar]
- Lotteau, M.; Loubet, P.; Pousse, M.; Dufrasnes, E.; Sonnemann, G. Critical Review of Life Cycle Assessment (LCA) for the Built Environment at the Neighborhood Scale. Build. Environ. 2015, 93, 165–178. [Google Scholar] [CrossRef]
- Hörnschemeyer, B.; Söfker-Rieniets, A.; Niesten, J.; Arendt, R.; Kleckers, J.; Klemm, C.; Stretz, C.; Reicher, C.; Grimsehl-Schmitz, W.; Wirbals, D.; et al. The ResourcePlan—An Instrument for Resource-Efficient Development of Urban Neighborhoods. Sustainability 2022, 14, 1522. [Google Scholar] [CrossRef]
- Guinée, J.B.; Cucurachi, S.; Henriksson, P.J.G.; Heijungs, R. Digesting the Alphabet Soup of LCA. Int. J. Life Cycle Assess. 2018, 23, 1507–1511. [Google Scholar] [CrossRef]
- Sathaye, J.; Lucon, O.; Christensen, J.; Rahman, A.; Denton, F.; Fujino, J.; Heath, G.; Kadner, S.; Mirza, M.; Rudnick, H.; et al. Renewable Energy in the Context of Sustainable Energy; Edenhofer, O., Madruga, R.P., Sokona, Y., Eds.; IPCC: Cambridge, MA, USA, 2011. [Google Scholar]
- Baumstark, L.; Bauer, N.; Benke, F.; Bertram, C.; Bi, S.; Gong, C.C.; Dietrich, J.P.; Dirnaichner, A.; Giannousakis, A.; Hilaire, J.; et al. REMIND2.1: Transformation and Innovation Dynamics of the Energy-Economic System within Climate and Sustainability Limits. Geosci. Model Dev. Discuss. 2021, 14, 6571–6603. [Google Scholar] [CrossRef]
- Oemof-Developer Group Oemof Documentation. Available online: https://oemof-solph.readthedocs.io/en/latest/ (accessed on 7 June 2021).
- Oemof-Developer Group Oemof-Solph-Tests. Available online: https://github.com/oemof/oemof-solph/tree/dev/tests (accessed on 7 June 2021).
- Budde, J. Wärmepumpen in Stadtquartieren—Untersuchung Anhand Eines Quartiers in Herne; Bachelorarbeit: Münster, Germany, 2020. [Google Scholar]
- RWTH Aachen University’s Institute for Energy Efficient Buildings and Indoor Climate (EBC) Richardsonpy. Available online: https://github.com/RWTH-EBC/richardsonpy (accessed on 7 June 2021).
- Meier, H.; Fünfgeld, C.; Adam, T.; Schieferdecker, B. BDEW/VKU/Geodeleitfaden—Abwicklung von Standardlastprofilen Gas; BDEW: Berlin, Germany, 2011. [Google Scholar]
- Deutscher Wetterdienst Climate Data Center. Available online: https://cdc.dwd.de/portal/202007291339/index.html (accessed on 7 June 2021).
- Deutscher Wetterdienst Wetter Und Klima—Deutscher Wetterdienst-Klimaüberwachung-Deutschland-Zeitreihen Und Trends. Available online: https://www.dwd.de/DE/leistungen/zeitreihen/zeitreihen.html?nn=480164. (accessed on 7 June 2021).
- Bundesverband der Energie- und Wasserwirtschaft e.V.; co2Online; Dena; Deutscher Mieterbund; EnergieAgentur Nord-Rhein-Westfahlen; HEA; Institut für sozial-ökologische Forschung; Öko-Institut e.V.; Verband kommunaler Unternehmen e.V.; Verbraucherzentrale Energieberatung Stromspiegel für Deutschland. Available online: https://www.stromspiegel.de/fileadmin/ssi/stromspiegel/Broschuere/Stromspiegel-2019-web.pdf (accessed on 29 August 2020).
- Energie-Agentur, D. Dena Der Dena-Gebäudereport 2015. Statistiken und Analysen zur Energieeffizienz im Gebäudebestand; DENA: Berlin, Germany, 2015. [Google Scholar]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial Life Cycle Assessment (LCA): What Exactly Is It about? A Proposal towards Using a Common Terminology and a Research Agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.; Struijs, J.; Zelm, R. ReCiPE 2008: A Life Cycle Impact Assessment Method Which Compromises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Int. J. Life Cycle Assess. 2009.
- Hauschild, M.Z.; Huijbregts, M.A.J. (Eds.) Life Cycle Impact Assessment. In LCA Compendium—The Complete World of Life Cycle Assessment; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-94-017-9743-6. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2016, 22, 138–147. [Google Scholar] [CrossRef]
- World Health Organization. WHO Methods and Data Sources for Global Burden of Disease Estimates 2000–2011; WTO: Geneva, Switzerland, 2013.
- GaBi GaBi Solutions. Available online: http://www.gabi-software.com/deutsch/uebersicht/was-ist-gabi-software/ (accessed on 14 May 2021).
- Ecoinvent Ecoinvent. Available online: https://www.ecoinvent.org/ (accessed on 14 May 2021).
- Le Varlet, T.; Schmidt, O.; Gambhir, A.; Few, S.; Staffell, I. Comparative Life Cycle Assessment of Lithium-Ion Battery Chemistries for Residential Storage. J. Energy Storage 2020, 28, 101230. [Google Scholar] [CrossRef]
- Vandepaer, L.; Cloutier, J.; Bauer, C.; Amor, B. Integrating Batteries in the Future Swiss Electricity Supply System: A Consequential Environmental Assessment. J. Ind. Ecol. 2019, 23, 709–725. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef]
- Hong, J.; Chen, W.; Qi, C.; Ye, L.; Xu, C. Life Cycle Assessment of Multicrystalline Silicon Photovoltaic Cell Production in China. Solar Energy 2016, 133, 283–293. [Google Scholar] [CrossRef]
- Ardente, F.; Latunussa, C.E.L.; Blengini, G.A. Resource Efficient Recovery of Critical and Precious Metals from Waste Silicon PV Panel Recycling. Waste Manag. 2019, 91, 156–167. [Google Scholar] [CrossRef]
- Deng, R.; Chang, N.L.; Quyang, Z.; Chong, C.M. A Techno-Economic Review of Silicon Photovoltaic Module Recycling. Renew. Sustain. Energy Rev. 2019, 109, 532–550. [Google Scholar] [CrossRef]
- Vignali, G. Environmental Assessment of Domestic Boilers: A Comparison of Condensing and Traditional Technology Using Life Cycle Assessment Methodology. J. Clean. Prod. 2017, 142, 2493–2508. [Google Scholar] [CrossRef]
- Isoplus Doppelrohr. Available online: https://www.isoplus.de/fileadmin/data/downloads/documents/germany/products/Doppelrohr-8-Seiten_DEUTSCH_Web.pdf (accessed on 28 December 2020).
- Bau und Sanierung von Nah- und Fernwärmeleitungen. Available online: https://www.bbr-online.de/service/veranstaltungen/artikel/bau-und-sanierung-von-nah-und-fernwaermeleitungen/ (accessed on 28 December 2020).
- de Bruyn, S.; Bijleveld, M.; de Graaff, L.; Schep, E.; Schroten, A.; Vergeer, R.; Ahdour, S. Environmental Prices Handbook; EU28 Version; CE Delft: Delft, The Netherlands, 2018. [Google Scholar]
- Arendt, R.; Bachmann, T.M.; Motoshita, M.; Bach, V.; Finkbeiner, M. Comparison of Different Monetization Methods in LCA: A Review. Sustainability 2020, 12, 10493. [Google Scholar] [CrossRef]
- Arendt, R.; Bach, V.; Finkbeiner, M. The Global Environmental Costs of Mining and Processing Abiotic Raw Materials and Their Geographic Distribution. J. Clean. Prod. 2022, 361, 132232. [Google Scholar] [CrossRef]
- Europäische Kommission Part III: Annex to Impact Assessment Guidelines. Available online: https://ec.europa.eu/smart-regulation/impact/commission_guidelines/docs/iag_2009_annex_en.pdf (accessed on 27 February 2021).
- Kuik, O.; Brander, L.; Nikitina, N.; Navrud, S.; Magnussen, K.; Fall, E.H. Report on the Monetary Valuation of Energy Related Impacts on Land Use; D.3.2. CASES Cost Assessment of Sustainable Energy Systems; University of Amsterdam: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Woods, J.S.; Veltman, K.; Huijbregts, M.A.J.; Verones, F.; Hertwich, E.G. Towards a Meaningful Assessment of Marine Ecological Impacts in Life Cycle Assessment (LCA). Environ. Int. 2016, 89–90, 48–61. [Google Scholar] [CrossRef]
- Lehmann, A.; Bach, V.; Finkbeiner, M. Product Environmental Footprint in Policy and Market Decisions: Applicability and Impact Assessment. Integr. Environ. Assess. Manag. 2015, 11, 417–424. [Google Scholar] [CrossRef]
- European Commision-Joint Research Center. ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European Context, 1st ed.; Publication Office of the European Union: Luxemburg, 2011; ISBN 978-92-79-17451-3.
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—the UNEP-SETAC Toxicity Model: Recommended Characterisation Factors for Human Toxicity and Freshwater Ecotoxicity in Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2008, 13, 532. [Google Scholar] [CrossRef]
- Rørbech, J.T.; Vadenbo, C.; Hellweg, S.; Astrup, T.F. Impact Assessment of Abiotic Resources in LCA: Quantitative Comparison of Selected Characterization Models. Environ. Sci. Technol. 2014, 48, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- STEAG GmbH Energiestandort Herne. Available online: https://www.steag.com/de/aktuelles/einblicke/energiestandort-herne (accessed on 2 March 2021).
- Stadt Herne CO2-Bilanz der Stadt Herne. Available online: https://www.herne.de/Stadt-und-Leben/Umwelt/Energie/CO-Bilanz-der-Stadt-Herne/ (accessed on 28 July 2022).
- Bahlawan, H.; Poganietz, W.-R.; Spina, P.R.; Venturini, M. Cradle-to-Gate Life Cycle Assessment of Energy Systems for Residential Applications by Accounting for Scaling Effects. Appl. Therm. Eng. 2020, 171, 115062. [Google Scholar] [CrossRef]
- Moore, F.T. Economies of Scale: Some Statistical Evidence. Q. J. Econ. 1959, 73, 232–245. [Google Scholar] [CrossRef]
- Quaschning, V. Optimale Dimensionierung von PV-Speichersystemen. Available online: https://www.volker-quaschning.de/artikel/2013-06-Dimensionierung-PV-Speicher/index.php (accessed on 28 February 2021).
Technology | LCA Stage | Parts | Lifetime |
---|---|---|---|
Battery Storage System | Production | Li-Fe-Phosphate [53] | 19 years [53] |
End-of-Life | Battery Storage [54] | - | |
Photovoltaic System (153 W/m2 (base case), 190 W/m2 (optimized cases)) | Production | Glass of PV modules [24] | 30 years [23,55] |
PV Modules [56] | 30 years [23,55] | ||
Inverter [52] | 15 years | ||
End-of-Life | PV System [57,58] | - | |
Combined Heat and Power Plant | Production | CHP [51] | 60,000 h |
Use Phase | Gas [51] | - | |
End-of-Life | CHP [26] | - | |
Gas Boiler | Production | Gas boiler [51] | 15 years [59] |
Use Phase | Gas [51] | - | |
End-of-Life | 95% Recycling [51] | - | |
Local Heat Network | Production | Heat pipes [60] | 50 years [61] |
Trench [51] | - | ||
End-of-Life | Heat Pipes | - | |
Heat Pumps | Production | Heat Pumps [25] | 20 years [25] |
Use Phase | Refrigerant, Electricity, Maintenance [25] | - | |
End-of-Life | Heat pumps (without heat collectors) [25] | - |
Scenario | Supply of Heat (kWh/Year) | Electricity Used for Heat Supply (kWh/Year) | Supply of Electricity (kWh/Year) |
---|---|---|---|
Base case | 629,432 | 0 | 132,210 |
CO2 optimized | 629,432 | 128,568 | 260,778 |
Cost optimized | 629,432 | 104,530 | 236,740 |
Scenario | Human Health (DALY) | Ecosystem (Species yr.) | Resource (USD 2003) |
---|---|---|---|
Base | 0.2605 | 0.0010 | 21,200.68 |
CO2 optimized | 0.2127 | 0.0032 | 14,985.26 |
CO2 optimized reduced battery storage | 0.1817 | 0.0020 | 14,623.8 |
Cost optimized | 0.1929 | 0.0015 | 10,322.63 |
Scenario | Damage to Ecosystem (EUR2020) | Damage to Human Health (EUR2020) | Resource (EUR2020) | Sum (EUR2020) |
---|---|---|---|---|
Base | 46,674 | 24,068 | 22,219 | 92,961 |
CO2-optimized | 146,595 (+214%) | 19,653 (−18%) | 15,705 (−29%) | 181,953 |
CO2-optimized reduced battery storage | 95,571 (+105%) | 9084 (−62%) | 15,327 (−31%) | 119,982 |
Cost-optimized | 70,991 (+52%) | 17,823 (−25%) | 10,819 (−51%) | 99,633 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quest, G.; Arendt, R.; Klemm, C.; Bach, V.; Budde, J.; Vennemann, P.; Finkbeiner, M. Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany. Energies 2022, 15, 5900. https://doi.org/10.3390/en15165900
Quest G, Arendt R, Klemm C, Bach V, Budde J, Vennemann P, Finkbeiner M. Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany. Energies. 2022; 15(16):5900. https://doi.org/10.3390/en15165900
Chicago/Turabian StyleQuest, Gemina, Rosalie Arendt, Christian Klemm, Vanessa Bach, Janik Budde, Peter Vennemann, and Matthias Finkbeiner. 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany" Energies 15, no. 16: 5900. https://doi.org/10.3390/en15165900
APA StyleQuest, G., Arendt, R., Klemm, C., Bach, V., Budde, J., Vennemann, P., & Finkbeiner, M. (2022). Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany. Energies, 15(16), 5900. https://doi.org/10.3390/en15165900