Biomass Waste for Energy Production
Abstract
:1. Introduction
2. Special Issue Performance
3. Prospects for Future Developments
- -
- On the topic of biomass waste: Its availability, characterization and role in the circular economy. The availability of biomass waste should be achieved globally [11], especially due to its hazardous nature [12]. Moreover, there is a limited number of studies that discuss the characterization of biomass waste in terms of ultimate and proximate compositions, densification [13], heating power, etc. [14].
- -
- On the topic of progress in waste-to-energy technologies. Carbonization, which is a renewed technique from which biocarbon is obtained from biomass waste [15,16], pyrolysis [17], which is suitable for bio-oil production, plasma gasification, which [18] is suitable for hazardous waste elimination, and supercritical water gasification [19], which is suitable for high-moisture biomass waste, deserve to be developed. Although one article in this Special Issue studied the combustion characteristics of biomass in a boiler, our understanding of gasification gas combustion characteristics is limited; thus, it is necessary to improve our understanding in order to improve the market penetration of this technology. The references [20,21,22] are suggested as readings on this matter.
- -
- On the computational models of biomass-based energy generation processes. There are several recent developments regarding this matter as expressed by Ramos et al. [23]. Specifically, a CFD plasma gasification model was developed by Ismail et al. [24] and CFD conventional gasification models are provided by [25,26].
- -
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dyjakon, A.; Noszczyk, T. Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones. Energies 2020, 13, 2468. [Google Scholar] [CrossRef]
- Stępień, P.; Świechowski, K.; Hnat, M.; Kugler, S.; Stegenta-Dąbrowska, S.; Koziel, J.A.; Manczarski, P.; Białowiec, A. Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel. Energies 2019, 12, 4344. [Google Scholar] [CrossRef]
- Den Boer, J.; Dyjakon, A.; Den Boer, E.; García-Galindo, D.; Bosona, T.; Gebresenbet, G. Life-Cycle Assessment of the Use of Peach Pruning Residues for Electricity Generation. Energies 2020, 13, 2734. [Google Scholar] [CrossRef]
- Malmir, T.; Ranjbar, S.; Eicker, U. Improving Municipal Solid Waste Management Strategies of Montréal (Canada) Using Life Cycle Assessment and Optimization of Technology Options. Energies 2020, 13, 5701. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J. Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor. Energies 2020, 13, 2392. [Google Scholar] [CrossRef]
- Hoang, D.L.; Davis, C.; Moll, H.C.; Nonhebel, S. Can Multiple Uses of Biomass Limit the Feedstock Availability for Future Biogas Production? An Overview of Biogas Feedstocks and Their Alternative Uses. Energies 2020, 13, 2747. [Google Scholar] [CrossRef]
- Kozioł, J.; Czubala, J.; Kozioł, M.; Ziembicki, P. Generalized Energy and Ecological Characteristics of the Process of Co-Firing Coal with Biomass in a Steam Boiler. Energies 2020, 13, 2634. [Google Scholar] [CrossRef]
- Calì, G.; Deiana, P.; Bassano, C.; Meloni, S.; Maggio, E.; Mascia, M.; Pettinau, A. Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit. Energies 2020, 13, 2594. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Calado, L.; Silva, V.; Brito, P.; Vilarinho, C. Experimental and Modeling Analysis of Brewers’ Spent Grains Gasification in a Downdraft Reactor. Energies 2019, 12, 4413. [Google Scholar] [CrossRef]
- Copa, J.R.; Tuna, C.E.; Silveira, J.L.; Boloy, R.A.M.; Brito, P.; Silva, V.; Cardoso, J.; Eusébio, D. Techno-Economic Assessment of the Use of Syngas Generated from Biomass to Feed an Internal Combustion Engine. Energies 2020, 13, 3097. [Google Scholar] [CrossRef]
- Teixeira, S.; Monteiro, E.; Silva, V.; Rouboa, A. Prospective application of municipal solid wastes for energy production in Portugal. Energy Policy 2014, 71, 159–168. [Google Scholar] [CrossRef]
- Couto, N.; Silva, V.; Monteiro, E.; Rouboa, A. Hazardous Waste Management in Portugal: An Overview. Energy Procedia 2013, 36, 607–611. [Google Scholar] [CrossRef]
- Monteiro, E.; Mantha, V.; Rouboa, A. The feasibility of biomass pellets production in Portugal. Energy Source Part B. 2013, 8, 28–34. [Google Scholar] [CrossRef]
- Alves, O.; Passos, J.; Brito, P.; Gonçalves, M.; Monteiro, E. Characterization of municipal, construction and demolition wastes for energy production through gasification—A case study for a portuguese waste management company. In Innovation, Engineering and Entrepreneurship; Machado, J., Soares, F., Veiga, G., Eds.; Springer: Cham, Switzerland, 2019; Volume 505, pp. 619–625. [Google Scholar]
- Alves, O.; Panizio, R.; Gonçalves, M.; Passos, J.; Calado, L.; Monteiro, E.; Brito, P. Carbonisation as a pre-treatment for rdf wastes prior to gasification. In Wastes: Solutions, Treatments and Opportunities III, 1st ed.; Vilarinho, C., Castro, F., Gonçalves, M., Fernando, A.L., Eds.; CRC Press: London, UK, 2019; Volume 3, pp. 543–548. [Google Scholar]
- Alves, O.; Nobre, C.; Durão, L.; Monteiro, E.; Brito, P.; Gonçalves, M. Effects of dry and hydrothermal carbonisation on the properties of solid recovered fuels from construction and municipal solid wastes. Energy Convers. Manag. 2021, 237, 114101. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Sadeqzadeh, M.; Guoa, M.; Borhani, T.N.; Konda, N.V.S.N.; Garcia, M.C.; Wang, L.; Hallette, J.; Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog. Energy Combust. Sci. 2019, 71, 1–80. [Google Scholar] [CrossRef]
- Oliveira, M.; Ramos, A.; Ismail, T.A.; Monteiro, E.; Rouboa, A. A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments. Energies 2022, 15, 1475. [Google Scholar] [CrossRef]
- Lee, C.S.; Conradie, A.V.; Lester, E. Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 2021, 415, 128837. [Google Scholar] [CrossRef]
- Monteiro, E.; Rouboa, A. Analysis of combustion flame of syngas-air mixtures. In Proceedings of the ASME Power Conference, Chicago, IL, USA, 13–15 July 2010. [Google Scholar]
- Monteiro, E.; Sotton, J.; Bellenoue, M.; Moreira, N.A.; Malheiro, S. Experimental study of syngas combustion at engine-like conditions in a rapid compression machine. Exp. Therm. Fluid Sci. 2011, 35, 1473–1479. [Google Scholar] [CrossRef]
- Monteiro, E.; Rouboa, A.; Bellenoue, M.; Boust, B.; Sotton, J. Multi-zone modeling and simulation of syngas combustion under laminar conditions. Appl. Energy 2014, 114, 724–734. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Rouboa, A. Numerical approaches and comprehensive models for gasification process: A review. Renew. Sustain. Energy Rev. 2019, 110, 188–206. [Google Scholar] [CrossRef]
- Ismail, T.M.; Monteiro, E.; Ramos, A.; El-Salam, M.A.; Rouboa, A. An Eulerian model for forest residues gasification in a plasma gasifier. Energy 2019, 182, 1069–1083. [Google Scholar] [CrossRef]
- Couto, N.; Silva, V.; Monteiro, E.; Brito, P.S.D.; Rouboa, A. Experimental and Numerical Analysis of Coffee Husks Biomass Gasification in a Fluidized Bed Reactor. Energy Procedia 2013, 36, 591–595. [Google Scholar] [CrossRef]
- Ismail, T.M.; Ramos, A.; Monteiro, E.; El-Salam, M.A.; Rouboa, A. Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment. Renew. Energy 2020, 147, 2429–2439. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Brito, P.; Castro, C.; Calado, L.; Vilarinho, C. Experimental Analysis of Brewers’ Spent Grains Steam Gasification in an Allothermal Batch Reactor. Energies 2019, 12, 912. [Google Scholar] [CrossRef]
- Alves, O.; Calado, L.; Panizio, R.; Gonçalves, M.; Monteiro, E.; Brito, P. Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels. Waste Manag. 2021, 131, 148–162. [Google Scholar] [CrossRef]
Reference | Special Issue Topic | Specific Topic |
---|---|---|
Dyjakon and Noszczyk [1] | Waste-to-Energy | Torrefaction |
Stępień et al. [2] | Waste-to-Energy | Torrefaction |
Boer et al. [3] | Life-Cycle Analysis | Biomass Waste |
Malmir et al. [4] | Life-Cycle Analysis | Waste Management |
Dębowski et al. [5] | Waste-to-Energy | Anaerobic Digestion |
Hoang et al. [6] * | Waste-to-Energy | Biomass Waste |
Kozioł et al. [7] | Waste-to-Energy | Combustion |
Calì et al. [8] | Waste-to-Energy | Gasification |
Ferreira et al. [9] | Waste-to-Energy and Computational Models | Gasification |
Copa et al. [10] | Waste-to-Energy and Cost Analysis | Gasification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, E.; Ferreira, S. Biomass Waste for Energy Production. Energies 2022, 15, 5943. https://doi.org/10.3390/en15165943
Monteiro E, Ferreira S. Biomass Waste for Energy Production. Energies. 2022; 15(16):5943. https://doi.org/10.3390/en15165943
Chicago/Turabian StyleMonteiro, Eliseu, and Sérgio Ferreira. 2022. "Biomass Waste for Energy Production" Energies 15, no. 16: 5943. https://doi.org/10.3390/en15165943
APA StyleMonteiro, E., & Ferreira, S. (2022). Biomass Waste for Energy Production. Energies, 15(16), 5943. https://doi.org/10.3390/en15165943