Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island
Abstract
:1. Introduction
- Key Performance Indicators (KPIs) analysis is used to evaluate the estimation accuracy and to compare the different algorithms’ performances. Within this context, the metrics that are in use in the literature such as Mean Absolute Error (MAE) often lead to overlooking important quality parameters, such as the maximum forecast error and the error distribution. MAE and RMSE evaluate the forecasted value discrepancy’s closeness to the true value, respectively, avoiding the positive and negative errors of mutual counteraction in the prediction. MSE represents the forecasted value divergence from the actual value, while MAPE highlights the forecasting techniques’ precision. MAPE helps to investigate the estimation methods’ performance when diverse data sets are used.
- Pre-processing techniques of data, tuning of the model hyper-parameters, selection of the validation and training sets, and graphical representation of the results.
- Validation of the results and accuracy of big data accumulated for the islands.
2. Data Sources, Pre-Processing, and Exploration
3. Materials and Methods
3.1. Artificial Neural Networks (ANNs)
3.2. Particle Swarm Optimization (PSO)
3.3. Multiple Linear Regression (MLR) Modeling
3.4. Error Metrics
4. Results
4.1. Electricity Demand Forecasting
4.2. Error Metrics
4.3. Multi Regression Equations
4.4. Correlation Matrix
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nie, R.X.; Tian, Z.P.; Long, R.Y.; Dong, W. Forecasting household electricity demand with hybrid machine learning-based methods: Effects of residents’ psychological preferences and calendar variables. Expert Syst. Appl. 2022, 206, 117854. [Google Scholar] [CrossRef]
- Gunay, M.E. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy 2016, 90, 92–101. [Google Scholar] [CrossRef]
- Sultana, N.; Hossain, S.M.; Almuhaini, S.H.; Düştegör, D. Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand. Energies 2022, 15, 3425. [Google Scholar] [CrossRef]
- Román-Portabales, A.; López-Nores, M.; Pazos-Arias, J.J. Systematic review of electricity demand forecast using ann-based machine learning algorithms. Sensors 2021, 21, 4544. [Google Scholar] [CrossRef] [PubMed]
- Abdulsalam, K.A.; Babatunde, O.M. Electrical energy demand forecasting model using artificial neural network: A case study of Lagos State Nigeria. Int. J. Data Netw. Sci. 2019, 3, 305–322. [Google Scholar] [CrossRef]
- Kazemzadeh, M.-R.; Amjadian, A.; Amraee, T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 2020, 204, 117948. [Google Scholar] [CrossRef]
- Hao, J.; Sun, X.; Feng, Q. A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm. Energies 2020, 13, 550. [Google Scholar] [CrossRef]
- del Real, A.J.; Dorado, F.; Durán, J. Energy Demand Forecasting Using Deep Learning: Applications for the French Grid. Energies 2020, 13, 2242. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312–1326. [Google Scholar] [CrossRef]
- Kaytez, F. A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy 2020, 197, 117200. [Google Scholar] [CrossRef]
- Ramsami, P.; King, R.T.A. Neural Network Frameworks for Electricity Forecasting in Mauritius and Rodrigues Islands. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 23–27 August 2021; pp. 1–5. [Google Scholar]
- Bendaoud, N.M.M.; Farah, N.; Ben Ahmed, S. Applying load profiles propagation to machine learning based electrical energy forecasting. Electr. Power Syst. Res. 2022, 203, 107635. [Google Scholar] [CrossRef]
- Sen, D.; Tunç, K.M.; Günay, M.E. Forecasting electricity consumption of OECD countries: A global machine learning modeling approach. Util. Policy 2021, 70, 101222. [Google Scholar] [CrossRef]
- Tun, Y.L.; Thar, K.; Thwal, C.M.; Hong, C.S. Federated Learning based Energy Demand Prediction with Clustered Aggregation. In Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Korea, 17–20 January 2021; pp. 164–167. [Google Scholar]
- Kolokas, N.; Ioannidis, D.; Tzovaras, D. Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization. Energies 2021, 14, 3162. [Google Scholar] [CrossRef]
- Al-Musaylh, M.S.; Deo, R.C.; Li, Y. Electrical Energy Demand Forecasting Model Development and Evaluation with Maximum Overlap Discrete Wavelet Transform-Online Sequential Extreme Learning Machines Algorithms. Energies 2020, 13, 2307. [Google Scholar] [CrossRef]
- Moustris, K.; Kavadias, K.A.; Zafirakis, D.; Kaldellis, J.K. Medium, short, and very short-term prognosis of load demand for the Greek Island of Tilos using artificial neural networks and human thermal comfort-discomfort biometeorological data. Renew. Energy 2020, 147, 100–109. [Google Scholar] [CrossRef]
- Bannor, E.; Acheampong, A.O. Deploying artificial neural networks for modeling energy demand: International evidence. Int. J. Energy Sect. Manag. 2020, 14, 285–315. [Google Scholar] [CrossRef]
- Hamzaçebi, C.; Es, H.A.; Çakmak, R. Forecasting of Turkey’s monthly electricity demand by seasonal artificial neural network. Neural Comput. Appl. 2017, 31, 2217–2231. [Google Scholar] [CrossRef]
- Angelopoulos, D.; Siskos, Y.; Psarras, J. Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece. Eur. J. Oper. Res. 2019, 275, 252–265. [Google Scholar] [CrossRef]
- Şahin, U.; Ballı, S.; Chen, Y. Forecasting seasonal electricity generation in European countries under COVID-19-induced lockdown using fractional grey prediction models and machine learning methods. Appl. Energy 2021, 302, 117540. [Google Scholar] [CrossRef]
- Hou, R.; Li, S.; Wu, M.; Ren, G.; Gao, W.; Khayatnezhad, M. Assessing of impact climate parameters on the gap between hydropower supply and electricity demand by RCPs scenarios and optimized ANN by the improved Pathfinder (IPF) algorithm. Energy 2021, 237, 121621. [Google Scholar] [CrossRef]
- Baba, A. Advanced AI-based techniques to predict daily energy consumption: A case study. Expert Syst. Appl. 2021, 184, 115508. [Google Scholar] [CrossRef]
- Pegalajar, M.C.; Ruíz, L.G.B.; Cuéllar, M.P.; Rueda, R. Analysis and enhanced prediction of the Spanish Electricity Network through Big Data and Machine Learning techniques. Int. J. Approx. Reason. 2021, 133, 48–59. [Google Scholar] [CrossRef]
- Porteiro, R.; Hernández-Callejo, L.; Nesmachnow, S. Electricity demand forecasting in industrial and residential facilities using ensemble machine learning/Prediction de demanda electrica en instalaciones industrialesy residenciales utilizando aprendizaje automatico combinado. Rev. Fac. De Ing. 2022, 102, 9–25. [Google Scholar]
- Di Leo, S.; Caramuta, P.; Curci, P.; Cosmi, C. Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models. Energy 2020, 196, 117058. [Google Scholar] [CrossRef]
- Alkan, Ö.; Albayrak, Ö.K. Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA. Renew. Energy 2020, 162, 712–726. [Google Scholar] [CrossRef]
- Eskin, N.; Artar, H.; Tolun, S. Wind energy potential of Gökçeada Island in Turkey. Renew. Sustain. Energy Rev. 2008, 12, 839–851. [Google Scholar] [CrossRef]
- Argin, M.; Yerci, V.; Erdogan, N.; Kucuksari, S.; Cali, U. Exploring the offshore wind energy potential of Turkey based on multi-criteria site selection. Energy Strategy Rev. 2019, 23, 33–46. [Google Scholar] [CrossRef]
- Emeksiz, C.; Demirci, B. The determination of offshore wind energy potential of Turkey by using novelty hybrid site selection method. Sustain. Energy Technol. Assess. 2019, 36, 100562. [Google Scholar] [CrossRef]
- GESTAŞ Maritime Transport Company. Available online: https://www.gdu.com.tr/gestas-hakkinda (accessed on 23 April 2021).
- Yilmaz, U. Electricity Production with Renewable Energy Sources in Gokceada. Master’s Thesis, Istanbul Technical University, Istanbul, Turkey, June 2008. [Google Scholar]
- Turkish Statistical Institute. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 (accessed on 15 January 2022).
- Turkish Electricity Transmission Corporation. Available online: https://www.teias.gov.tr/en-US/interconnections (accessed on 23 May 2021).
- Uludag Electricity Distribution Company. Available online: https://www.uedas.com.tr/ (accessed on 2 May 2021).
- World Bank Open Data. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=TR (accessed on 9 January 2022).
- Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. [Google Scholar] [CrossRef]
- Kialashaki, A.; Reisel, J.R. Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States. Energy 2014, 76, 749–760. [Google Scholar] [CrossRef]
- Kaynar, O.; Yilmaz, I.; Demirkoparan, F. Forecasting of natural gas consumption with neural network and neuro fuzzy system. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2011, 26, 221–238. [Google Scholar]
- Rojas, R. The Backpropagation Algorithm; Springer: Berlin, Germany, 1996; Chapter 7 (Book Section). [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Company: Boston, MA, USA, 2014; Chapter 2; pp. 7–19. [Google Scholar]
- Birecikli, B.; Karaman, O.A.; Çelebi, S.B.; Turgut, A. Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks. J. Mech. Sci. Technol. 2020, 34, 4631–4640. [Google Scholar] [CrossRef]
- Anand, A.; Suganthi, L. Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand. Energies 2018, 11, 728. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Ye, L.; Zhu, Q.; Geng, Z.; He, Y.L.; Han, Y. A novel prediction intervals method integrating an error & self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction. Energy 2018, 164, 137–146. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Pourghasemi, H.R. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 2017, 157, 310–324. [Google Scholar] [CrossRef]
- Hua, H.; Qin, Z.; Dong, N.; Qin, Y.; Ye, M.; Wang, Z.; Chen, X.; Cao, J. Data-Driven Dynamical Control for Bottom-up Energy Internet System. IEEE Trans. Sustain. Energy 2022, 13, 315–327. [Google Scholar] [CrossRef]
- Halepoto, I.A.; Uqaili, M.A.; Chowdhry, B.S. Least Square Regression Based Integrated Multi- Parameteric Demand Modeling for Short Term Load Forecasting. Mehran Univ. Res. J. Eng. Technol. 2014, 33, 215–226. [Google Scholar]
- Aslan, Y.; Yavasca, S.; Yasar, C. Long Term Electric Peak Load Forecasting of Kutahya Using Different Approaches. Int. J. Tech. Phys. Probl. Eng. (IJTPE) 2011, 3, 87–91. [Google Scholar]
- Zhang, W.; Zhang, L.; Wang, J.; Niu, X. Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting. Appl. Energy 2020, 277, 115561. [Google Scholar] [CrossRef]
- Houimli, R.; Zmami, M.; Ben-Salha, O. Short-term electric load forecasting in Tunisia using artificial neural networks. Energy Syst. 2020, 11, 357–375. [Google Scholar] [CrossRef]
- Cebekhulu, E.; Onumanyi, A.J.; Isaac, S.J. Performance Analysis of Machine Learning Algorithms for Energy Demand–Supply Prediction in Smart Grids. Sustainability 2022, 14, 2546. [Google Scholar] [CrossRef]
- Shah, I.; Jan, F.; Ali, S. Functional Data Approach for Short-Term Electricity Demand Forecasting. Math. Probl. Eng. 2022, 2022, 6709779. [Google Scholar] [CrossRef]
- Soyler, I.; Izgi, E. Electricity Demand Forecasting of Hospital Buildings in Istanbul. Sustainability 2022, 14, 8187. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Moayyed, H.; Zare, K.; Mohammadi-Ivatloo, B. Short-term electricity demand forecasting via variational autoencoders and batch training-based bidirectional long short-term memory. Sustain. Energy Technol. Assess. 2022, 52, 102209. [Google Scholar] [CrossRef]
- Aponte, O.; McConky, K.T. Forecasting an electricity demand threshold to proactively trigger cost saving demand response actions. Energy Build. 2022, 27, 112221. [Google Scholar] [CrossRef]
- Brown, S.H. Multiple linear regression analysis: A matrix approach with MATLAB. Ala. J. Math. 2009, 34, 1–3. [Google Scholar]
- Steiger, J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 1980, 87, 245. [Google Scholar] [CrossRef]
Author | Forecasting for | Method | Variables |
---|---|---|---|
Abdulsalama and Babatundea [5] | electrical energy demand | ANN- RNN | population, temperature, energy consumption, GDP |
Kazemzadeh et al. [6] | long-term electric peak load and demand | ANN- SVR- ARIMA- PSO | load and energy data |
Hao et al. [7] | energy demand | Artificial Bee Colony Algorithm | GDP, industrial structure, urbanization rate, population, energy structure, CPI, and technological innovation |
Real et al. [8] | energy demand | CNN- ANN and comparing with ARIMA- traditional ANN | week of the year, hour, day of the week, holidays |
Bedi and Toshniwal [9] | electricity demand | ANN- RNN- SVR | electricity consumption data set |
Kaytez [10] | electricity consumption | LSSVM- ARIMA | electricity imports and export, population, installed capacity, and gross electricity generation |
Ramsami and King [11] | electricity demand | adaptive network-based fuzzy inference system, ANN, RNN | historical electricity data |
Bendaoud et al. [12] | electrical energy demand | CNN | load profile |
Sen et al. [13] | electricity consumption | ANN- SVM | population, GDP, inflation rate, and unemployment rate |
Tun et al. [14] | energy demand | RNN | past energy usage data |
Kolokas et al. [15] | energy demand and generation | multi-step time series forecasting | past energy data and weather forecasts |
Al-Musaylh et al. [16] | electricity demand | online sequential extreme learning machine (OS-ELM) | climate variables |
Moustris et al. [17] | load demand | ANN | meteorological data, cooling power index (CP) |
Bannor and Acheampong [18] | energy demand for Australia, China, France, India, and the USA | ANN, MLP optimization | financial development, FDI, economic growth, industrialization, population, urbanization, energy price |
Input Variables | Gokceada | ||
---|---|---|---|
Low Scenario | Base Scenario | High Scenario | |
Car number | 5% | 9% | 13% |
Passenger | 10% | 13% | 16% |
Import (% of GDP) | 1% | 2% | 3% |
Export (% of GDP) | 2% | 3% | 4% |
Methods | Gokceada | |
---|---|---|
R2 | MLR | 0.989 |
PSO | 0.994 | |
ANN | 0.997 | |
RMSE | MLR | 4.68 × 10−3 |
PSO | 3.87 × 10−3 | |
ANN | 2.01 × 10−3 | |
MSE | MLR | 21.09 × 10−6 |
PSO | 14.97 × 10−6 | |
ANN | 4.04 × 10−6 | |
MAE | MLR | 11.571 × 10−3 |
PSO | 9.276 × 10−3 | |
ANN | 5.129 × 10−3 |
Eq No | Parameters | Multi Regression Equations | R2 | p-Value |
---|---|---|---|---|
1 | a, b, c, d | F = 0.48058 − 7.5808 × 10−6 ∗ a + 3.5045 × 10−6 ∗ b + 0.021986 ∗ c + 0.036363 ∗ d | 0.832 | 1.24 × 10−20 |
2 | b, c, d | F = 0.56671 + 6.491 × 10−7 ∗ b + 0.016694 ∗ c + 0.038628 ∗ d | 0.823 | 5.17 × 10−21 |
3 | a, c, d | F = 0.58567 + 1.0165 × 10−6 ∗ a + 0.01556 ∗ c + 0.039447 ∗ d | 0.819 | 9.03 × 10−21 |
4 | c, d | F = 0.58478 + 0.015659 ∗ c + 0.039883 ∗ d | 0.817 | 9.80 × 10−22 |
5 | a, b, d | F = 0.87175 − 3.6642 × 10−6 ∗ a + 1.9249 × 10−6 ∗ b + 0.044941 ∗ d | 0.812 | 2.56 × 10−20 |
6 | b, d | F = 0.86732 + 5.5859 × 10−7 ∗ b + 0.045052 ∗ d | 0.81 | 2.93 × 10−21 |
7 | a, d | F = 0.8659 + 1.0503 × 10−6 ∗ a + 0.045306 ∗ d | 0.808 | 3.93 × 10−21 |
8 | a, b, c | F = −0.099234 − 1.8114 × 10−5 ∗ a + 8.2667 × 10−6 ∗ b + 0.07587 ∗ c | 0.628 | 4.57 × 10−12 |
9 | b, c | F = 0.03156 + 1.5734 × 10−6 ∗ b + 0.070809 ∗ c | 0.571 | 3.37 × 10−11 |
10 | a, c | F = 0.049826 + 2.426 × 10−6 ∗ a + 0.070922 ∗ c | 0.548 | 1.48 × 10−10 |
11 | a, b | F = 1.9819 − 6.4003 × 10−6 ∗ a + 4.5347 × 10−6 ∗ b | 0.0744 | 1.10 × 10−1 |
Variables | Import | Export | Car Number | Passenger | Real Consumption |
---|---|---|---|---|---|
Import | 1 | 0.7345 | 0.1535 | 0.0979 | 0.7318 |
Export | 0.7345 | 1 | 0.1958 | 0.2172 | 0.8974 |
Car Number | 0.1535 | 0.1958 | 1 | 0.9573 | 0.2228 |
Passenger | 0.0979 | 0.2172 | 0.9573 | 1 | 0.2588 |
Real Consumption | 0.7318 | 0.8974 | 0.2228 | 0.2588 | 1 |
Methods | Real | ANN | PSO | MLR |
---|---|---|---|---|
Real | 1 | 0.998 | 0.989 | 0.979 |
ANN | 0.998 | 1 | 0.966 | 0.958 |
PSO | 0.989 | 0.966 | 1 | 0.951 |
MLR | 0.979 | 0.958 | 0.951 | 1 |
Methods | Variables | Coefficient | 95% Confidence Interval | t | P > |t| | |
---|---|---|---|---|---|---|
Real | Car number | 0.341 | 0.213 | 0.469 | 5.34 | 0 |
Passenger number | 0.165 | 0.127 | 0.203 | 8.74 | 0 | |
Import | 0.08 | 0.007 | 0.009 | 10.26 | 0 | |
Export | 0.009 | 0.007 | 0.011 | 11.16 | 0 | |
ANN | Car number | 0.475 | 0.013 | 0.937 | 2.06 | 0.044 |
Passenger number | 0.117 | −0.019 | 0.254 | 1.72 | 0.091 | |
Import | −0.006 | −0.008 | −0.004 | −5.52 | 0 | |
Export | 0.007 | 0.0008 | 0.013 | 2.29 | 0.026 | |
PSO | Car number | 1.273 | 1.164 | 1.382 | 23.41 | 0 |
Passenger number | 0.639 | 0.607 | 0.672 | 39.64 | 0 | |
Import | −0.009 | −0.009 | −0.008 | −32.72 | 0 | |
Export | 0.031 | 0.029 | 0.032 | 42.86 | 0 | |
MLR | Car number | 0.309 | 0.202 | 0.417 | 5.77 | 0 |
Passenger number | 0.175 | 0.143 | 0.207 | 11.02 | 0 | |
Import | −0.008 | −0.009 | −0.008 | −31.36 | 0 | |
Export | 0.01 | 0.008 | 0.011 | 13.89 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saglam, M.; Spataru, C.; Karaman, O.A. Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island. Energies 2022, 15, 5950. https://doi.org/10.3390/en15165950
Saglam M, Spataru C, Karaman OA. Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island. Energies. 2022; 15(16):5950. https://doi.org/10.3390/en15165950
Chicago/Turabian StyleSaglam, Mustafa, Catalina Spataru, and Omer Ali Karaman. 2022. "Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island" Energies 15, no. 16: 5950. https://doi.org/10.3390/en15165950
APA StyleSaglam, M., Spataru, C., & Karaman, O. A. (2022). Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island. Energies, 15(16), 5950. https://doi.org/10.3390/en15165950