Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-Substrate in Anaerobic Co-Digestion Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluated Raw Materials
2.2. Digester Used and Experimental Design
2.3. Analytical Methods
2.4. Statistical Treatment of Results
3. Results and Discussion
3.1. Chemical Characterization of Raw Materials
3.2. Methane Potential from Crotalaria Legume Biomass (CL)
3.3. Statistical Results from PM and CL Assays
3.4. Analysis of the PM and CL Assays Methane Yields
3.5. Effect of OLR on Different Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fundación Global Nature and SIGFITO. Guía Para la Gestión de los Residuos Agrarios. Madrid, Spain. 2021. Available online: https://fundacionglobalnature.org/wp-content/uploads/2021/07/Guia-Residuos-Agrarios.pdf (accessed on 27 June 2022).
- Instituto Nacional de Estadística. Available online: https://www.ine.es/jaxi/Datos.htm?path=/t26/p067/p02/residuos/serie/&file=01001.px (accessed on 29 April 2022).
- Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Impactos del Cambio Climático en los Procesos de Desertificación en España. Madrid, Spain. 2016. Available online: https://www.miteco.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/impactos-desertificacion_tcm30-178355.pdf (accessed on 27 June 2022).
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- European Commission. RePowerEU: A Plan to Rapidly Reduce Dependence on Russian Fossil Fuels and Fast Forward the Green Transition. 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131 (accessed on 5 April 2022).
- Ministerio Para la Transición Ecológica y el Reto Demográfico. Marco Estratégico de Energía y Clima Hoja de Ruta de Biogas. Madrid, Spain. 2022. Available online: https://energia.gob.es/es-es/Novedades/Documents/00HR_Biogas_V6.pdf (accessed on 27 June 2022).
- Riaño, B.; Molinuevo-Salces, B.; Parralejo, A.; Royano, L.; González, J.; García, M.C. Techno-economic evaluation of anaerobic co-digestion of pepper waste and swine manure. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef]
- Zilio, M.; Pigoli, A.; Rizzi, B.; Herrera, A.; Tambone, F.; Geromel, G.; Meers, E.; Schoumans, O.; Giordano, A.; Adani, F. Using highly stabilized digestate and digestate-derived ammonium sulphate to replace synthetic fertilizers: The effects on soil, environment, and crop production. Sci. Total Environ. 2022, 815, 152919. [Google Scholar] [CrossRef]
- Mórtola, N.; Romaniuk, R.; Consentino, V.; Eiza, M.; Carfagno, P.; Rizzo, P.; Bres, P.; Riera, N.; Roba, M.; Butti, M.; et al. Potential Use of a Poultry Manure Digestate as a Biofertiliser: Evaluation of Soil Properties and Lactuca sativa Growth. Pedosphere 2019, 29, 60–69. [Google Scholar] [CrossRef]
- Ehmann, A.; Thumm, U.; Lewandowski, I. Fertilizing potential of separated biogas digestates in annual and perennial biomass production systems. Front. Sustain. Food Syst. 2018, 2, 12. [Google Scholar] [CrossRef]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svenson, S.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production. Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, T.; Xing, W.; Li, R.; Yang, T.; Yao, N.; Lv, D. Links between carbon/nitrogen ratio, synergy and microbial characteristics of long-term semi-continuous anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour. Technol. 2022, 343, 126094. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Kornaros, M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresour. Technol. 2015, 175, 553–562. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Wang, S.; Zhang, Y.; Hu, Y.; Hu, Z.; Wu, G.; Zhan, X. Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway. Waste Manag. 2020, 114, 96–106. [Google Scholar] [CrossRef]
- Zarkadas, I.S.; Zachariou, S.; Stamou, I.; Kaldis, F.V.; Lioti, M.; Sarigiannis, D.A. Anaerobic Digestion of Olive Mill Wastewater: Focusing on the Effect of Nitrogen Source. Clean Soil Air Water 2019, 47, 1800300. [Google Scholar] [CrossRef]
- Prabhu, A.V.; Raja, A.; Avinash, A.; Pugazhendhi, A. Parametric optimization of biogas potential in anaerobic co-digestion of biomass wastes. Fuel 2021, 288, 119574. [Google Scholar] [CrossRef]
- Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [Google Scholar] [CrossRef]
- Somridhivej, B.; Boyd, C.E. An assessment of factors affecting the reliability of total alkalinity measurements. Aquaculture 2016, 459, 99–109. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Chu, C.-Y.; Ou, C.-M. Pre-treatment study on two-stage biohydrogen and biomethane productions in a continuous co-digestion process from a mixture of swine manure and pineapple waste. Int. J. Hydrogen Energy 2021, 46, 11325–11336. [Google Scholar] [CrossRef]
- Palmero, F.; Fernandez, J.A.; Garcia, F.O.; Haro, R.J.; Prasad, P.V.V.; Salvagiotti, F.; Ciampitti, I.A. A quantitative review into the contributions of biological nitrogen fixation to agricultural systems by grain legumes. Eur. J. Agron. 2022, 136, 126514. [Google Scholar] [CrossRef]
- Cong, W.; Moset, V.; Feng, L.; Moller, H.B.; Eriksen, J. Anaerobic co-digestion of grass and forbs—Influence of cattle manure or grass based inoculum. Biomass Bioenergy 2018, 119, 90–96. [Google Scholar] [CrossRef]
- Parralejo, A.I. Cultivos Energéticos y Residuos Agro-Ganaderos Como Sustratos Para Optimizar el Potencial de Generación de Biogás en Procesos de Digestión Anaerobia. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Spain, 2020. [Google Scholar]
- APHA. Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- EPA-600/4-79-020; Methods for Chemical Analysis of Water and Wastes, Environmental Protection Agency. Environmental Monitoring and Support Laboratory: Washington, DC, USA, 1983.
- Buchauer, K. Titrations verfahren in der Abwasserund Schlam-manalytik zur Bestimmung von flüchtigen organischen Säuren. Das Gas- und Wasserfach (gfw). Wasser Abwasser 1997, 138, 313–320. [Google Scholar]
- Norma UNE-EN 16948; Biocombustibles sólidos, Determinación de Contenido Total de C H y N. Método Instrumental: Madrid, Spain, 2015.
- Flotats, X.; Campos, E.; Palatsi, J.; Bonmatí, X. Digestión anaerobia de purines de cerdo y co-digestión con residuos de la industria alimentaria. Porc. Monogr. Actual. 2001, 65, 51–65. [Google Scholar]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Chamy, R.; Ramos, C. Factors in the determination of methanogenic potential of manure. Bioresour. Technol. 2011, 102, 7673–7677. [Google Scholar] [CrossRef] [PubMed]
- Yerassyl, D.; Jin, Y.; Zhanar, S.; Aigul, K.; Saltanat, Y. The current status and lost biogas production potential of Kazakhstan from anaerobic digestion of livestock and poultry manure. Energies 2022, 15, 3270. [Google Scholar] [CrossRef]
- Seick, I.; Vergara-Araya, M.; Wiese, J. Flexible Energy from Biogas: Use of Secondary Digesters for Heat Storage-Results of Fermentation Tests. Soil Air Water 2021, 2000373. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kovalev, D.A.; Nozhevnikova, A.N.; Zhuravleva, E.A.; Katraeva, I.V.; Grigoriev, V.S.; Litti, Y.V. Effect of low digestate recirculation ratio on biofuel and bioenergy recovery in a two-stage anaerobic digestion process. Int. J. Hydrogen Energy 2021, 46, 39688–39699. [Google Scholar] [CrossRef]
- MARM. Ministerio de Medio Ambiente y Medio Rural y Marino. El sector del Biogás Agroindustrial en España. Madrid, Spain. 2021. Available online: https://www.mapa.gob.es/es/ganaderia/temas/requisitos-y-condicionantes-de-la-produccion-ganadera/DOCBIOGASVersion21-09-2010_tcm30-110139.pdf (accessed on 1 June 2022).
- Khadka, A.; Parajuli, A.; Dangol, S.; Thapa, B.; Sapkota, L.; Carmona-Martínez, A.A.; Ghimire, A. Effect of the substrate to inoculum ratios on the kinetics of biogas production during the mesophilic anaerobic digestion of food waste. Energies 2022, 15, 834. [Google Scholar] [CrossRef]
- Wei, Y.; Yuan, H.; Wachemo, A.C.; Li, X. Anaerobic co-digestion of cattle manure and liquid fraction of digestate (LFD) prepreated corn stover: Pretreatment process optimization and evolution of microbial community structure. Bioresour. Technol. 2020, 296, 122282. [Google Scholar] [CrossRef]
- Zahan, Z.; Georgious, S.; Muster, T.H.; Othman, M.Z. Semi-continuous anaerobic co-digestion of chicken little with agricultural and food wastes: A case study on the effect of carbon/nitrogen ratio, substrates mixing ratio and organic loading. Bioresour. Technol. 2018, 270, 245–254. [Google Scholar] [CrossRef]
- Li, Z.; Wachemo, A.C.; Yuan, H.; Korai, R.M.; Li, X. Improving methane content and yield from rice straw by adding extra hydrogen into a two stage anaerobic digestion system. Int. J. Hydrogen Energy 2020, 45, 3739–3749. [Google Scholar] [CrossRef]
ASSAY | OLR, g VS lD−1 d−1 | Mixture Composition (35% PP + 15% RO + 50% PM (or CL)) | Hydraulic Retention Time (HRT), d | |||
---|---|---|---|---|---|---|
PP, g | RO, g | PM, g | CL, g | |||
Period I | 1.2 ± 0.1 | 27.0 ± 0.1 | 0.8 ± 0.1 | 64.0 ± 0.1 | - | 70 |
27.0 ± 0.1 | 0.8 ± 0.1 | - | 3.2 ± 0.1 (+ 61.0 ± 0.1 water) | 70 | ||
Period II | 1.4 ± 0.1 | 31.0 ± 0.1 | 0.9 ± 0.1 | 133.0 ± 0.1 | - | 46 |
Period III | 1.6 ± 0.1 | 31.0 ± 0.1 | 0.9 ± 0.1 | - | 3.7± 0.1 (+ 130.0 ± 0.1 water) | 46 |
36.0 ± 0.1 | 1.0 ± 0.1 | 152.0 ± 0.1 | - | 23 | ||
36.0 ± 0.1 | 1.0 ± 0.1 | - | 4.2 ± 0.1 (+ 148.0 ± 0.1 digestate) | 110 | ||
Period IV | 1.8 ± 0.1 | 40.0 ± 0.1 | 1.2 ± 0.1 | 188.0 ± 0.1 | - | 19 |
40.0 ± 0.1 | 1.2 ± 0.1 | - | 4.8 ± 0.1 (+ 183.0 ± 0.1 digestate) | 92 |
Parameter | Inoculum | PM | CL | PP | RO |
---|---|---|---|---|---|
pH | 7.06 ± 0.02 | 6.99 ± 0.05 | 5.18 ± 0.03 | 3.92 ± 0.04 | 6.45 ± 0.02 |
Redox potential, mV | −388 ± 3 | −392 ± 4 | 144 ± 1 | 167 ± 1 | 129 ± 1 |
Alkalinity, mg CaCO3 L−1 | 7190 ± 7 | 9028 ± 4 | 426 ± 85 | - | - |
N-NH4, mg L−1 | 1150 ± 99 | 2360 ± 1 | 34 ± 1 | <30 | 264 ± 2 |
C, % | 0.46 ± 0.00 | 1.77 ± 0.08 | 44.80 ± 0.28 | 3.21 ± 0.44 | 77.61 ± 1.18 |
N, % | 0.16 ± 0.03 | 0.32 ± 0.00 | 1.97 ± 0.06 | 0.01 ± 0.00 | 0.00 ± 0.00 |
C/N | 2.93 ± 0.60 | 5.54 ± 0.32 | 22.38 ± 0.49 | 356.67 ± 48.71 | 74.28 ± 0.00 |
TS, % | 1.44 ± 0.16 | 5.99 ± 0.07 | 87.14 ± 0.08 | 7.70 ± 0.21 | 100 ± 0 |
VS *, % | 0.55 ± 0.02 | 3.99 ± 0.04 | 80.64 ± 0.12 | 6.65 ± 0.18 | 100 ± 0 |
Ca, ppm | 1093 ± 14 | 1598 ± 13 | 6167 ± 110 | 2315 ± 66 | 211 ± 5 |
Fe, ppm | 62 ± 3 | 151 ± 2 | 389 ± 5 | 57 ± 1 | 27 ± 1 |
K, ppm | 3206 ± 67 | 1888 ± 1 | 13,706 ± 49 | 2105 ± 21 | 29 ± 8 |
Mg, ppm | 858 ± 66 | 939 ± 21 | 4328 ± 3 | 698 ± 6 | 97 ± 10 |
Na, ppm | 927 ± 12 | 537 ± 10 | 822 ± 14 | 221 ± 8 | 150 ± 5 |
p, ppm | 152 ± 15 | 1486 ± 48 | 807 ± 17 | 41 ± 1 | - |
Al, ppm | 40 ± 1 | 121 ± 4 | 3536 ± 1 | 76 ± 2 | 15 ± 1 |
BMP, NL CH4 kg VS−1 | - | - | 316 | 374 ** | 740 ** |
Assay | Parameter | |||
---|---|---|---|---|
N-NH4, mg L−1 | VFA, mg L−1 | Alkalinity, mg CaCO3 L−1 | VFA/Alkalinity Ratio | |
Period I (Assay PM) | 1270 ± 305 c | 1363 ± 257 b | 6989 ± 422 cb | 0.20 |
Period I (Assay CL) | 995 ± 179 b | 1277 ± 93 ab | 6203 ± 408 b | 0.21 |
Period II (Assay PM) | 1968 ± 270 d | 410 ± 60 a | 7833 ± 373 c | 0.05 |
Period II (Assay CL) | 552 ± 96 a | 290 ± 27 a | 4399 ± 396 a | 0.07 |
Period III (Assay PM) | 1813 ± 136 d | 579 ± 82 a | 9044 ± 502 d | 0.06 |
Period III (Assay CL) | 593 ± 158 a | 1167 ± 128 ab | 4927 ± 765 a | 0.24 |
Period IV (Assay PM) | 2690 ± 318 d | 689 ± 75 a | 10,150 ± 385 e | 0.07 |
Period IV (Assay CL) | 1157 ± 395 bc | 1287 ± 198 ab | 10,400 ± 738 e | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isabel, P.A.A.; Luis, R.B.; Juan, C.P.; Jerónimo, G.C. Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-Substrate in Anaerobic Co-Digestion Processes. Energies 2022, 15, 5978. https://doi.org/10.3390/en15165978
Isabel PAA, Luis RB, Juan CP, Jerónimo GC. Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-Substrate in Anaerobic Co-Digestion Processes. Energies. 2022; 15(16):5978. https://doi.org/10.3390/en15165978
Chicago/Turabian StyleIsabel, Parralejo Alcobendas Ana, Royano Barroso Luis, Cabanillas Patilla Juan, and González Cortés Jerónimo. 2022. "Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-Substrate in Anaerobic Co-Digestion Processes" Energies 15, no. 16: 5978. https://doi.org/10.3390/en15165978
APA StyleIsabel, P. A. A., Luis, R. B., Juan, C. P., & Jerónimo, G. C. (2022). Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-Substrate in Anaerobic Co-Digestion Processes. Energies, 15(16), 5978. https://doi.org/10.3390/en15165978