Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A
Abstract
:1. Introduction
2. General Aspects and Optimization
2.1. Multilayer Wire-on-Tube Condenser
2.2. Operating Conditions
2.3. Proposed Objective Functions
2.4. Algorithms
2.5. Case Study
3. Results and Discussion
3.1. Analysis of the Optimization Algorithm
3.2. Optimization Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | length without wires (mm) |
A | area (m2) |
CFD | computational fluid dynamics |
D | diameter (mm) |
FOA | Falcon Optimization Algorithm |
GWP | Global Warming Potential |
L | length (mm) |
Ltp | length with wire (mm) |
mass flow rate (kg/s) | |
MOEAD | Multi-objective Evolutionary Algorithm based on Decomposition |
MOGA | Multi-objective Genetic Algorithm |
MOHTS | Multi-objective Heat Transfer Search |
MOWO | Multi-objective Wale Optimization |
Nc | layers number (-) |
Nf | rows number (-) |
Nw | wires number (-) |
NSGAII | Non-dominated Sorting Genetic Algorithm-II |
NTU | number of transfer units (-) |
OMOPSO | Optimized Multi-objective Particle Swarm Optimization |
P | pressure (bar) |
heat transfer rate (W) | |
S | pitch (mm) |
T | temperature (K) |
Subscripts | |
amb | ambient |
air | air |
cond | Condensation and condenser |
dsh | desuperheating |
in | inlet |
out | outlet |
r | refrigerant |
sub | subcooling |
T | total |
t | tube |
w | wire |
References
- Xie, G.N.; Sundén, B.; Wang, Q.W. Optimization of compact heat exchangers by a genetic algorithm. Appl. Therm. Eng. 2008, 28, 895–906. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, X.; He, G.; Xiao, W.; Li, S.; Sengupta, D.; El-Halwagi, M.M. Economic and system reliability optimization of heat exchanger networks using NSGA-II algorithm. Appl. Therm. Eng. 2017, 124, 716–724. [Google Scholar] [CrossRef]
- Bansal, P.K.; Chin, T.C. Modelling and optimisation of wire-and-tube condenser. Int. J. Refrig. 2003, 26, 601–613. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, D.; Zhao, R.; Leng, Y. Effect of airflow field optimization around spiral wire-on-tube condenser on a frost-free refrigerator performance. Appl. Therm. Eng. 2017, 114, 785–792. [Google Scholar] [CrossRef]
- Raja, B.D.; Jhala, R.L.; Patel, V. Thermal-hydraulic optimization of plate heat exchanger: A multi-objective approach. Int. J. Therm. Sci. 2018, 124, 522–535. [Google Scholar] [CrossRef]
- Imran, M.; Pambudi, N.A.; Farooq, M. Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm. Case Stud. Therm. Eng. 2017, 10, 570–578. [Google Scholar] [CrossRef]
- Kumar, S.D.; Chandramohan, D.; Purushothaman, K.; Sathish, T. Optimal hydraulic and thermal constrain for plate heat exchanger using multi objective wale optimization. Mater. Today Proc. 2020, 21, 876–881. [Google Scholar] [CrossRef]
- Sodagar-Abardeh, J.; Ebrahimi-Moghadam, A.; Farzaneh-Gord, M.; Norouzi, A. Optimizing chevron plate heat exchangers based on the second law of thermodynamics and genetic algorithm. J. Therm. Anal. Calorim. 2020, 139, 3563–3576. [Google Scholar] [CrossRef]
- Tharakeshwar, T.K.; Seetharamu, K.N.; Prasad, B.D. Multi-objective optimization using bat algorithm for shell and tube heat exchangers. Appl. Therm. Eng. 2017, 110, 1029–1038. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, J.; Wang, J.; Jian, G.; Wen, J.; Zhang, Z. Configuration optimization of shell-and-tube heat exchangers with helical baffles using multi-objective genetic algorithm based on fluid-structure interaction. Int. Commun. Heat Mass Transf. 2017, 85, 62–69. [Google Scholar] [CrossRef]
- Zarea, H.; Kashkooli, F.M.; Mehryan, A.M.; Saffarian, M.R.; Beherghani, E.N. Optimal design of plate-fin heat exchangers by a Bees Algorithm. Appl. Therm. Eng. 2014, 69, 267–277. [Google Scholar] [CrossRef]
- Rao, R.V.; Saroj, A. Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy 2017, 128, 785–800. [Google Scholar] [CrossRef]
- Mirzaei, M.; Hajabdollahi, H.; Fadakar, H. Multi-objective optimization of shell-and-tube heat exchanger by constructal theory. Appl. Therm. Eng. 2017, 125, 9–19. [Google Scholar] [CrossRef]
- Raja, B.D.; Jhala, R.L.; Patel, V. Many-objective optimization of shell and tube heat exchanger. Therm. Sci. Eng. Prog. 2017, 2, 87–101. [Google Scholar] [CrossRef]
- Dhavle, S.V.; Kulkarni, A.J.; Shastri, A.; Kale, I.R. Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Comput. Appl. 2018, 30, 111–125. [Google Scholar] [CrossRef]
- de Vasconcelos Segundo, E.H.; Mariani, V.C.; dos Santos Coelho, L. Design of heat exchangers using Falcon Optimization Algorithm. Appl. Therm. Eng. 2019, 156, 119–144. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Paris, France, 18–20 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Sanaye, S.; Hajabdollahi, H. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl. Energy 2010, 87, 1893–1902. [Google Scholar] [CrossRef]
- Rodríguez, M.B.R.; Rodríguez, J.L.M.; Fontes, C.H.D.O. Thermo ecological optimization of shell and tube heat exchangers using NSGA II. Appl. Therm. Eng. 2019, 156, 91–98. [Google Scholar] [CrossRef]
- Liu, C.; Bu, W.; Xu, D. Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm. Int. J. Heat Mass Transf. 2017, 111, 65–82. [Google Scholar] [CrossRef]
- Sierra, M.R.; Coello, C.A.C. Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 505–519. [Google Scholar]
- Godínez, A.C.; Espinosa, L.E.M.; Montes, E.M. An experimental comparison of multiobjective algorithms: NSGA-II and OMOPSO. In Proceedings of the 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, 28 September–1 October 2010; pp. 28–33. [Google Scholar]
- Hadka, D.; Reed, P. Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evol. Comput. 2012, 20, 423–452. [Google Scholar] [CrossRef]
- Espindola, R.S.; Boeng, J.; Knabben, F.T.; Hermes, C.J. A new heat transfer correlation for natural draft wire-on-tube condensers for a broad geometry span. Int. J. Refrig. 2020, 114, 10–18. [Google Scholar] [CrossRef]
- Belman-Flores, J.M.; Heredia-Aricapa, Y.; García-Pabón, J.J.; Gallegos-Muñoz, A.; Serrano-Arellano, J.; Pérez-Reguera, C.G. An approximate model of a multilayer wire-on-tube condenser operating with R134a and R600a: Experimental validation and parametric analysis. Case Stud. Therm. Eng. 2021, 25, 100927. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Sierra, M.; Coello, C.A.C. On-line adaptation in multi-objective particle swarm optimization. In Proceedings of the IEEE Swarm Intelligence Symposium 2006, Indianapolis, IN, USA, 12–14 May 2006; pp. 12–14. [Google Scholar]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Benítez, A.; Nebro, A.; García-Nieto, J.; Oregi, I.; Ser, J.D. jMetalPy: A Python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 2019, 51, 100598. [Google Scholar] [CrossRef] [Green Version]
- Python Software Foundation. 2020. Available online: http://www.python.org (accessed on 15 April 2022).
Variable | Nomenclature | Type of Variable | Reference | Lower Limit | Upper Limit |
---|---|---|---|---|---|
Tube diameter (mm) | Dt | Continuous | 4.76 | 4 | 6 |
Wire diameter (mm) | Dw | Continuous | 1.30 | 1 | 2 |
Tube pitch (mm) | St | Continuous | 25.4 | 20 | 30 |
Wire pitch (mm) | Sw | Continuous | 4.06 | 4 | 5 |
Length with a wire (mm) | Ltp | Continuous | 101.6 | 80 | 120 |
Length without a wire (mm) | a | Continuous | 16.72 | 12 | 18 |
Number of layers | Nc | Discrete | 7 | 6 | 8 |
Number of rows | Nf | Discrete | 7 | 6 | 8 |
R134a | R600a | R513A | |
---|---|---|---|
Pcond (bar) | 9.2 | 5.3 | 11.4 |
Tin,r (°C) | 44.5 | 45.1 | 50.2 |
Tamb (°C) | 30 | 30 | 30 |
(kg/s) | 0.0013 | 0.0006 | 0.0013 |
Refrigerant | Algorithm | Diff | lwr | upr | p adj |
---|---|---|---|---|---|
R134a | NSGAII-MOEAD | 0.000000466 | −0.000000902 | 0.000001833 | 0.6976122 |
OMOPSO-MOEAD | −0.000001939 | −0.000003307 | −0.000000572 | 0.0029952 | |
OMOPSO-NSGAII | −0.000002405 | −0.000003773 | −0.000001038 | 0.0001789 | |
R600a | NSGAII-MOEAD | 0.001188397 | 0.000970156 | 0.001406639 | 0.0000000 |
OMOPSO-MOEAD | 0.000159179 | −0.000059061 | 0.000377421 | 0.1973007 | |
OMOPSO-NSGAII | −0.001029218 | −0.001247459 | −0.000810977 | 0.0000000 | |
R513A | NSGAII-MOEAD | −0.006567517 | −0.007110653 | −0.006024381 | 0.0000000 |
OMOPSO-MOEAD | 0.000395047 | −0.000148089 | 0.000938183 | 0.1990515 | |
OMOPSO-NSGAII | 0.006962564 | 0.006419428 | 0.007505700 | 0.0000000 |
Refrigerant | R134a | R600a | R513A | ||||||
---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 1 | Case 2 | Case 3 | Case 1 | Case 2 | Case 3 | |
(W) | 240.53 | 240.72 | 240.72 | 218.80 | 221.10 | 222.25 | 238.58 | 242.92 | 243.14 |
A (m2) | 0.36723 | 0.31415 | 0.31268 | 0.36570 | 0.32961 | 0.36189 | 0.36512 | 0.36334 | 0.35886 |
Dw (mm) | 1.3 | 1.0 | 1.0 | 1.3 | 1.0 | 1.0 | 1.2 | 1.0 | 1.0 |
Sw (mm) | 4.0 | 5.0 | 5.0 | 4.0 | 5.0 | 5.0 | 4.0 | 5.0 | 5.0 |
Dt (mm) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 4.8 |
St (mm) | 21.5 | 20.0 | 20.0 | 21.7 | 20.0 | 20.0 | 27.1 | 22.2 | 20.0 |
Ltp (mm) | 120.0 | 105.1 | 80.0 | 120.0 | 111.3 | 80.0 | 120.0 | 120.0 | 116.0 |
Nc (-) | 6 | 7 | 8 | 6 | 7 | 8 | 6 | 7 | 8 |
Nf (-) | 6 | 7 | 8 | 6 | 7 | 8 | 6 | 7 | 8 |
a (mm) | 18.0 | 15.4 | 10.0 | 18.0 | 16.0 | 14.1 | 18.0 | 18.0 | 18.0 |
Lt (mm) | 6716.0 | 8070.0 | 8269.0 | 6721.0 | 8437.0 | 8787.0 | 6998.0 | 9211.0 | 11,597.0 |
Nw (-) | 361.0 | 295.2 | 257.0 | 361.0 | 312.6 | 257.0 | 361.0 | 338.7 | 372.2 |
Lw (mm) | 118.5 | 130.0 | 150.0 | 119.1 | 130.0 | 150.0 | 148.9 | 144.1 | 150.0 |
Volume (m3) | 0.000144 | 0.000130 | 0.000132 | 0.000142 | 0.000136 | 0.000139 | 0.000146 | 0.000152 | 0.000154 |
Mass (kg) | 1.1205 | 1.0202 | 1.0376 | 1.1184 | 1.0698 | 1.0910 | 1.1449 | 1.1951 | 1.2094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heredia-Aricapa, Y.; Belman-Flores, J.M.; Soria-Alcaraz, J.A.; Pérez-García, V.; Elizalde-Blancas, F.; Alfaro-Ayala, J.A.; Ramírez-Minguela, J. Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A. Energies 2022, 15, 6101. https://doi.org/10.3390/en15176101
Heredia-Aricapa Y, Belman-Flores JM, Soria-Alcaraz JA, Pérez-García V, Elizalde-Blancas F, Alfaro-Ayala JA, Ramírez-Minguela J. Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A. Energies. 2022; 15(17):6101. https://doi.org/10.3390/en15176101
Chicago/Turabian StyleHeredia-Aricapa, Yonathan, Juan M. Belman-Flores, Jorge A. Soria-Alcaraz, Vicente Pérez-García, Francisco Elizalde-Blancas, Jorge A. Alfaro-Ayala, and José Ramírez-Minguela. 2022. "Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A" Energies 15, no. 17: 6101. https://doi.org/10.3390/en15176101
APA StyleHeredia-Aricapa, Y., Belman-Flores, J. M., Soria-Alcaraz, J. A., Pérez-García, V., Elizalde-Blancas, F., Alfaro-Ayala, J. A., & Ramírez-Minguela, J. (2022). Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A. Energies, 15(17), 6101. https://doi.org/10.3390/en15176101