Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Layout
2.2. Model Concept
2.3. Data Reconciliation and Processing
2.4. Simulation Scenarios
- No control: A constant airflow was set to cover the air demand during the peak periods;
- DO control: A constant DO was set to cover the air demand during the peak periods;
- Cascade control: The DO setpoint was adjusted based on the incoming ammonium load, which manipulates the blower via the VFD. The DO adjustment sequence was the simulation output.
3. Results and Discussion
3.1. Plant Performance Results
3.1.1. Field Data Analysis
3.1.2. Model Calibration and Verification
3.2. Aeration Control Energy Efficiency Results
3.2.1. Energy Demand at Constant Air Flow
3.2.2. Energy Demand at a Constant DO Level
3.2.3. Energy Demand when Applying Cascade Control
3.2.4. Sensitivity Analysis of the DO Setpoint
4. Conclusions
- The strong incoming wastewater with a high diurnal peak factor could be treated effectively (>90% organic removal, >85% nutrient removal) at high sludge ages (SRT = 14–18 d);
- The calibrated and verified biokinetic model could predict the plant performance effectively;
- The DO control approach with a constant setpoint could reduce the air demand by 24–25% compared to fixed air flow systems;
- The cascade control approach applying a feed-forward ammonium loop at peak periods could result in an additional 10% savings;
- The oxygen diffusion factor significantly affects the aeration energy demand. The typical range of alpha factor values varies from 0.4 to 0.65 in activated sludge systems, resulting in an approximately 60% aeration energy demand difference between the two borders of the range;
- For the dependence of the relative energy demand on the temperature and DO, a site-specific function was established, which could be utilized in decision-making related to the plant’s operation.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2019, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Borzooei, S.; Campo, G.; Cerutti, A.; Meucci, L.; Panepinto, D.; Ravina, M.; Zanetti, M. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Sci. Total Environ. 2019, 691, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Corominas, L.; Byrne, D.M.; Guest, J.S.; Hospido, A.; Roux, P.; Shaw, A.; Short, M.D. The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Res. 2020, 184, 116058. [Google Scholar] [CrossRef] [PubMed]
- Di Fraia, S.; Massarotti, N.; Vanoli, L. A novel energy assessment of urban wastewater treatment plants. Energy Convers. Manag. 2018, 163, 304–313. [Google Scholar] [CrossRef]
- Awe, O.W.; Liu, R.; Zhao, Y. Analysis of energy consumption and saving in wastewater treatment plant: Case study from Ireland. J. Water Sus. 2016, 6, 63–76. [Google Scholar]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants. Biores. Technol. 2020, 300, 122647. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Wang, X.; Li, F. Energy self-sufficient wastewater treatment plants: Feasibilities and challenges. Energy Procedia 2017, 105, 3741–3751. [Google Scholar] [CrossRef]
- Kollmann, R.; Neugebauer, G.; Kretschmer, F.; Truger, B.; Kindermann, H.; Stoeglehner, G.; Narodoslawsky, M. Renewable energy from wastewater—Practical aspects of integrating a wastewater treatment plant into local energy supply concepts. J. Clean. Prod. 2017, 155, 119–129. [Google Scholar] [CrossRef]
- Haslinger, J.; Lindtner, S.; Krampe, J. Operating costs and energy demand of wastewater treatment plants in Austria: Benchmarking results of the last 10 years. Water Sci. Technol. 2016, 74, 2620–2626. [Google Scholar] [CrossRef]
- Bodik, I.; Kubaska, M. Energy and sustainability of operation of a wastewater treatment plant. Environ. Prot. Eng. 2013, 39, 15–24. [Google Scholar] [CrossRef]
- Musabandesu, E.; Loge, F. Load shifting at wastewater treatment plants: A case study for participating as an energy demand resource. J. Clean. Prod. 2021, 282, 124454. [Google Scholar] [CrossRef]
- Mousel, D.; Palmowski, L.; Pinnekamp, J. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants. Sci. Total Environ. 2017, 575, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: Case study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Lensch, D.; Schaum, C.; Cornel, P. Examination of food waste co-digestion to manage the peak in energy demand at wastewater treatment plants. Water Sci. Technol. 2016, 73, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Remy, C.; Jekel, M. Energy analysis of conventional and source-separation systems for urban wastewater management using Life Cycle Assessment. Water Sci. Technol. 2012, 65, 22–29. [Google Scholar] [CrossRef]
- Hao, X.; Li, J.; van Loosdrecht, M.C.; Jiang, H.; Liu, R. Energy recovery from wastewater: Heat over organics. Water Res. 2019, 161, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Giberti, M.; Dereli, R.K.; Flynn, D.; Casey, E. Predicting wastewater treatment plant performance during aeration demand shifting with a dual-layer reaction settling model. Water Sci. Technol. 2020, 81, 1365–1374. [Google Scholar] [CrossRef]
- Pechaud, Y.; Pageot, S.; Goubet, A.; Quintero, C.D.; Gillot, S.; Fayolle, Y. Size of biological flocs in activated sludge systems: Influence of hydrodynamic parameters at different scales. J. Environ. Chem. Eng. 2021, 9, 105427. [Google Scholar] [CrossRef]
- Arora, A.S.; Nawaz, A.; Qyyum, M.A.; Ismail, S.; Aslam, M.; Tawfik, A.; Lee, M. Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects. Renew. Sustain. Energy Rev. 2021, 135, 110126. [Google Scholar] [CrossRef]
- Bencsik, D.; Takács, I.; Rosso, D. Dynamic alpha factors: Prediction in time and evolution along reactors. Water Res. 2022, 216, 118339. [Google Scholar] [CrossRef]
- Pan, Y.; Dagnew, M. A new approach to estimating oxygen off-gas fraction and dynamic alpha factor in aeration systems using hybrid machine learning and mechanistic models. J. Water Process. Eng. 2022, 48, 102924. [Google Scholar] [CrossRef]
- Hasan, A.; Salem, A.R.; Hadi, A.A.; Qandil, M.; Amano, R.S.; Alkhalidi, A. The power reclamation of utilizing micro-hydro turbines in the aeration basins of wastewater treatment plants. J. Energy Resour. Technol. 2021, 143, 081301. [Google Scholar] [CrossRef]
- Gernaey, K.V.; Van Loosdrecht, M.C.; Henze, M.; Lind, M.; Jørgensen, S.B. Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environ. Model. Softw. 2004, 19, 763–783. [Google Scholar] [CrossRef]
- Glover, G.C.; Printemps, C.; Essemiani, K.; Meinhold, J. Modelling of wastewater treatment plants—How far shall we go with sophisticated modelling tools? Water Sci. Technol. 2006, 53, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Y.; Wu, G.; Mao, J.; Zhou, T. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM). J. Environ. Manag. 2016, 165, 235–242. [Google Scholar] [CrossRef]
- Phanwilai, S.; Kangwannarakul, N.; Noophan, P.L.; Kasahara, T.; Terada, A.; Munakata-Marr, J.; Figueroa, L.A. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD: N ratio. Front. Environ. Sci. Eng. 2020, 14, 115. [Google Scholar] [CrossRef]
- Husin, M.H.; Rahmat, M.F.; Wahab, N.A.; Sabri, M.F.M.; Suhaili, S. Proportional-integral ammonium-based aeration control for activated sludge process. In Proceedings of the 2020 13th International UNIMAS Engineering Conference (EnCon), Kota Samarahan, Malaysia, 27–28 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Drewnowski, J.; Remiszewska-Skwarek, A.; Duda, S.; Łagód, G. Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes 2019, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Åmand, L.; Olsson, G.; Carlsson, B. Aeration control—A review. Water Sci. Technol. 2013, 67, 2374–2398. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Deng, L.; Zheng, D.; Wang, L.; Zhang, Y.; Yang, H.; Huang, F. Control of partial nitrification using pulse aeration for treating digested effluent of swine wastewater. Biores. Technol. 2018, 262, 271–277. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Hlavínek, P.; Raboni, M. Advances in wastewater nitrogen removal by biological processes: State of the art review. Rev. Ambient. Agua 2016, 11, 250–267. [Google Scholar] [CrossRef] [Green Version]
- Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.V.R.; Van Loosdrecht, M.C. Activated sludge model no. 2d, ASM2d. Water Sci. Technol. 1999, 39, 165–182. [Google Scholar] [CrossRef]
- Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; Tchobanoglous, G., Ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Simos, T.E. A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution. Comput. Math. Appl. 1993, 25, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Orhon, D.; Çokgör, E.U. COD fractionation in wastewater characterization—The state of the art. J. Chem. Technol. Biotechnol. 1997, 68, 283–293. [Google Scholar] [CrossRef]
- Petersen, B.; Gernaey, K.; Henze, M.; Vanrolleghem, P.A. Calibration of activated sludge models: A critical review of experimental designs. In Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling; Springer: Dordrecht, The Netherlands, 2003; pp. 101–186. [Google Scholar]
- Zhu, A.; Guo, J.; Ni, B.J.; Wang, S.; Yang, Q.; Peng, Y. A novel protocol for model calibration in biological wastewater treatment. Sci. Rep. 2015, 5, 8493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannina, G.; Cosenza, A.; Vanrolleghem, P.A.; Viviani, G. A practical protocol for calibration of nutrient removal wastewater treatment models. J. Hydroinformatics 2011, 13, 575–595. [Google Scholar] [CrossRef] [Green Version]
- Rieger, L.; Gillot, S.; Langergraber, G.; Ohtsuki, T.; Shaw, A.; Takacs, I.; Winkler, S. Guidelines for Using Activated Sludge Models; IWA Publishing: London, UK, 2012. [Google Scholar]
- Patry, G.G.; Takács, I. Settling of flocculent suspensions in secondary clarifiers. Water Res. 1992, 26, 473–479. [Google Scholar] [CrossRef]
- Mueller, J.; Boyle, W.C.; Popel, H.J. Aeration: Principles and Practice, Volume 11; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Revollar, S.; Vilanova, R.; Vega, P.; Francisco, M.; Meneses, M. Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective. Sustainability 2020, 12, 768. [Google Scholar] [CrossRef] [Green Version]
- Rieger, L.; Takács, I.; Siegrist, H. Improving nutrient removal while reducing energy use at three Swiss WWTPs using advanced control. Water Envrion. Res. 2012, 84, 170–188. [Google Scholar] [CrossRef]
- Bolles, S. Modeling Wastewater Aeration Systems to Discover Energy Savings Opportunities; Process Energy Services LLC: Londonderry, NH, USA, 2006. [Google Scholar]
- Chen, Y.; Zhang, H.; Yin, Y.; Zeng, F.; Cui, Z. Smart energy savings for aeration control in wastewater treatment. Energy Rep. 2022, 8, 1711–1721. [Google Scholar] [CrossRef]
- Leu, S.Y.; Rosso, D.; Jiang, P.; Larson, L.E.; Stenstrom, M.K. Real-Time efficiency monitoring for wastewater aeration systems. Water Pract. Technol. 2008, 3, wpt2008064. [Google Scholar] [CrossRef]
- Samstag, R.W.; Ducoste, J.J.; Griborio, A.; Nopens, I.; Batstone, D.J.; Wicks, J.D.; Laurent, J. CFD for wastewater treatment: An overview. Water Sci. Technol. 2016, 74, 549–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, K.N.; van Winckel, T.; Massoudieh, A.; Wett, B.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. Towards more predictive clarification models via experimental determination of flocculent settling coefficient value. Water Res. 2021, 190, 116294. [Google Scholar] [CrossRef] [PubMed]
- Han, H.G.; Qiao, J.F. Adaptive dissolved oxygen control based on dynamic structure neural network. Appl. Soft. Comput. 2011, 11, 3812–3820. [Google Scholar] [CrossRef]
Simulation Setup | |
---|---|
Biokinetic model | ASM2D [32] |
Influent fractionation model | COD fractions [35] |
Hydrodynamic model | Tank-in-series |
Sedimentation model | 1D double exponential [40] |
Aeration model | DO control, cascade control |
Numerical model | Runge–Kutta–Fehlberg 2 [34] |
Simulation environment | GPS-X 7.0 |
Simulation Protocol | IWA Good Modeling Practice Unified Protocol [39] |
Measured Influent | Measured Effluent | Average Removal Efficiency | |
---|---|---|---|
COD | 560–970 (776) | 35–68 (44) | 94% |
BOD5 | 265–465 (352) | 5–19 (7) | 98% |
TSS | 162–386 (294) | 6–18 (9) | 97% |
NH4-N | 49–97 (70) | 0.1–3.5 (1.4) | 98% |
TN | 64–121 (94) | 6.0–18.2 (13.1) | 86% |
TP | 6.9–14.1 (13.4) | 0.7–3.6 (2.2) | 84% |
Alkalinity | 395–420 (401) | n.d. 1 | - |
Calibration Parameter Group | Parameter Name | Value/Proportion |
---|---|---|
Raw influent fractions | soluble inert COD | 3% |
particulate inert COD | 15% | |
readily biodegradable COD | 44% | |
particulate biodegradable COD | 42% | |
ammonium to TN | 65% | |
ortho-phosphate to TP | 76% | |
Biokinetic parameters | heterotrophic yield [gCOD/gCOD] | 0.76 |
ammonia oxidizing yield [gCOD/gN) | 0.16 | |
Process performance parameters | volumetric organic loading rate [kgBOD5/m3] | 0.55 |
F/M ratio [kgBOD5/kg MLVSS.d] | 0.2 |
Modeled Effluent | Average Modeled Removal Efficiency | Modeled and Measured Treatment Difference | |
---|---|---|---|
COD | 32–46 (39) | 95% | 1% |
BOD5 | 9–14 (12) | 97% | 1% |
TSS | 8–13 (10) | 97% | <1% |
NH4-N | 0–4.2 (1.0) | 99% | 1% |
TN | 9.4–15.2 (11.3) | 88% | 2% |
TP | 1.9–3.2 (2.5) | 81% | 3% |
Alkalinity | 210–270 (245) | 39% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karches, T. Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling. Energies 2022, 15, 6113. https://doi.org/10.3390/en15176113
Karches T. Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling. Energies. 2022; 15(17):6113. https://doi.org/10.3390/en15176113
Chicago/Turabian StyleKarches, Tamás. 2022. "Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling" Energies 15, no. 17: 6113. https://doi.org/10.3390/en15176113
APA StyleKarches, T. (2022). Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling. Energies, 15(17), 6113. https://doi.org/10.3390/en15176113