Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China
Abstract
:1. Introduction
2. Geological Setting
3. Data and Analysis Methods
3.1. Factors Affecting Gas Well Production
3.2. Grey Correlation Analysis
3.3. Principles of the Multiple Regression Algorithm
4. Results and Discussion
4.1. Single-Factor Analysis
4.2. Grey Correlation Analysis
4.3. MLR Analysis
4.4. Application
5. Conclusions
- (1)
- First, the main geological and engineering factors that control the production capacity of horizontal wells in the Weiyuan shale gas field are clarified via the single-factor analysis and grey correlation analysis, with 121 horizontal wells used as the samples. The primary control factors are the thickness and drilled length of Long 111, while the secondary control factors are the fractured horizontal wellbore length, gas saturation, brittle mineral content, fracturing stage quantity, and proppant injection intensity.
- (2)
- For the production forecast of wells based on the multiple linear regression, one needs to select wells with continuous production curves and that are free of artificial interference when being brought into production or during production, such as casing deformation, frac hit, and sudden change in production schemes. For such wells, the model presented in this research can accurately predict the EUR of wells. For the wells newly brought into production, the model presented in this research can rapidly predict the ideal production capacity and the EUR of wells, with errors of no more than 10% compared to the analytical results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.H.; Zhong, Y.H.; Wang, C.S.; Ke, L.; Chou, W.D.; Zhao, Q. A brief analysis of key points and early production characteristics of shale gas exploration and development in China. J. Geol. 2021, 45, 197–212. [Google Scholar]
- Zou, C.N.; Zhao, Q.; Cong, L.Z.; Wang, H.Y.; Shi, Z.S.; Wu, J.; Pan, S.Q. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar]
- Feng, Y.; Ning, Z.F.; Liu, H.Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar]
- Zou, C.N.; Yang, Z.; Sun, S.S.; Zhao, Q.; Bai, W.H.; Liu, H.L.; Pan, S.Q.; Wu, S.T.; Yuan, Y.L. Exploring petroleum inside source kitchen: Shale oil and gas in Sichuan Basin. Sci. China Earth Sci. 2020, 50, 903–920. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Jia, A.L.; Wei, Y.S.; Wang, J.L.; Zhu, H.Q. Progress in shale gas exploration in China and prospects for future development. China. Pet. Explor. 2020, 25, 31–44. [Google Scholar]
- Li, Y.; Chen, J.-Q.; Yang, J.-H.; Liu, J.-S.; Tong, W.-S. Determination of shale macroscale modulus based on microscale measurement: A case study concerning multiscale mechanical characteristics. Pet. Sci. 2022, 19, 1262–1275. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Pan, Z.; Niu, X.; Meng, S. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the ordos basin, china. Fuel 2019, 241, 417–431. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, Q.; Lu, B.; Jiang, W.; Xiong, X.L.; Chen, P.; Jiang, R.; Ma, C. Lithofacies and distribution of Wufeng-Longmaxi organic-rich shale and its impact on shale gas production in Weiyuan shale gas play, southern Sichuan Basin, China. Acta Sedimentol. Sin. 2022; in press. [Google Scholar]
- Ma, X.H.; Li, X.Z.; Liang, F.; Wan, Y.J.; Shi, Q.; Wang, Y.H.; Zhang, X.W.; Che, M.G.; Guo, W.; Guo, W. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 555–563. [Google Scholar] [CrossRef]
- He, X.; Wu, J.F.; Yong, R.; Zhao, S.X.; Zhou, X.J.; Zhang, J.D.; Zhang, D.L.; Zhong, C.X. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan block, Sichuan Basin. Acta Pet. Sin. 2021, 42, 259–272. [Google Scholar]
- Ma, X. "Extreme utilization" development theory of unconventional natural gas. Pet. Explor. Dev. 2021, 48, 326–336. [Google Scholar] [CrossRef]
- Guo, X.S. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formations in Pingqiao shale gas field in Fuling area, Sichuan Basin. Nat. Gas Geosci. 2019, 30, 1–10. [Google Scholar] [CrossRef]
- Wang, P.W.; Zou, C.; Li, X.J.; Jiang, L.W.; Li, J.J.; Mei, J.; Zhang, Z.; Li, Q.F. Main geological controlling factors of shale gas enrichment and high yield in Zhaotong demonstration area. Acta Pet. Sin. 2018, 39, 744–753. [Google Scholar]
- Nie, H.K.; Chen, Q.; Zhang, G.R.; Sun, C.X.; Wang, P.W.; Lu, Z.Y. An overview of the characteristic of typical Wufeng–Longmaxi shale gas fields in the Sichuan Basin, China. Nat. Gas Ind. B 2021, 8, 217–230. [Google Scholar] [CrossRef]
- He, C.; Wan, Y.J.; Su, Y.H.; Luo, W.J.; Geng, X.Y. Comprehensive Analysis of Influencing Factors for Shale Gas Well Production in Weiyuan Gas Field. In Proceedings of the International Field Exploration and Development Conference 2019, Xi’an, China, 16 October 2019. [Google Scholar]
- Chai, Y. Study on the Main Controlling Factors of Shale Gas Production Based on Grey Correlation Method. J. Chon. Uni. Sci. Tech. Nat. Sci. Ed. 2018, 20, 32–34. [Google Scholar]
- Jayakumar, R.; Rai, R. Impact of Uncertainty in Estimation of Shale-Gas-Reservoir and Completion Properties on EUR Forecast and Optimal Development Planning: A Marcellus Case Study. SPE Res. Eval. Eng. 2014, 17, 60–73. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.L.; Li, J.; Xiao, J.F.; Zhong, S.C. An Analysis of Main Controlling Factors of Production for Horizontal Shale Gas Well in Weiyuan Block. J. Southwest. Pet. Uni. Sci. Tech. Ed. 2020, 41, 63–74. [Google Scholar]
- Jia, C.Y.; Jia, A.L.; He, D.B.; Wei, Y.S.; Qi, D.Y.; Wang, J.L. Key factors influencing shale gas horizontal well production. Nat. Gas Ind. 2017, 37, 80–88. [Google Scholar]
- Zhao, X.; Rui, Z.; Liao, X.; Zhang, R. A simulation method for modified isochronal well testing to determine shale gas well productivity. J. Nat. Gas Sci. Eng. 2015, 27, 479–485. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Li, X.; Meng, Z.; Yang, S.; Tan, X. Pressure transient and Blasingame production decline analysis of hydraulic fractured well with induced fractures in composite shale gas reservoirs. J. Nat. Gas Sci. Eng. 2021, 94, 104058. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, R.; Wang, Q.; Liu, X. Production performance analysis of multi-fractured horizontal well in shale gas reservoir considering space variable and stress-sensitive fractures. J. Pet. Sci. Eng. 2021, 207, 109071. [Google Scholar] [CrossRef]
- Han, D.; Kwon, S. Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs. Energies 2021, 14, 3629. [Google Scholar] [CrossRef]
- Niu, W.; Lu, J.; Sun, Y. A Production Prediction Method for Shale Gas Wells Based on Multiple Regression. Energies 2021, 14, 1461. [Google Scholar] [CrossRef]
- Yin, D.; Wang, D.; Zhang, C.; Duan, Y. Shale Gas Productivity Predicting Model and Analysis of Influence Factor. Open Pet. Eng. J. 2015, 8, 203–207. [Google Scholar]
- Guo, W. Differentiation Analysis on Shale Gas Production of the Horizontal Wells in Sichuan Weiyuan Block. Sci. Tech. Eng. 2018, 18, 228–233. [Google Scholar]
- Deng, J.L. Introduction to the grey system theory. Inner Mongolia Elec. Power. 1993, 3, 51–52. [Google Scholar]
- Fang, B.; Hu, J.; Xu, J.; Zhang, Y. A semi-analytical model for horizontal-well productivity in shale gas reservoirs: Coupling of multi-scale seepage and matrix shrinkage. J. Pet. Sci. Eng. 2020, 195, 107869. [Google Scholar] [CrossRef]
- Tan, X.R.; Deng, J.L. A new method for the multi-variable statistical analysis. Stat. Res. 1995, 3, 46–48. [Google Scholar]
- Liu, Y.; Zhang, X.; Shi, J.; Guo, W.; Kang, L.; Yu, R.; Sun, Y.; Wang, Z.; Pan, M. A reservoir quality evaluation approach for tight sandstone reservoirs based on the gray correlation algorithm: A case study of the Chang 6 layer in the W area of the as oilfield, Ordos Basin. Energy Explor. Exploit. 2021, 39, 1027–1056. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Zhao, A.K.; Yu, Q.; Zhang, D.; Zhang, Q.; Lei, Z.H. A new method for evaluating favorable shale gas exploration areas based on multi-linear regression analysis: A case study of marine shales of Wufeng-Longmaxi Formations, Upper Yangtze Region. Sediment. Geol. Teth. Geol. 2021, 41, 387–397. [Google Scholar]
- Liu, Y.; Lai, F.; Zhang, H.; Tan, Z.; Wang, Y.; Zhao, X.; Tan, X. A novel mineral composition inversion method of deep shale gas reservoir in Western Chongqing. J. Pet. Sci. Eng. 2021, 202, 108528. [Google Scholar]
- Tang, L.; Song, Y.; Li, Q.; Pang, X.; Jiang, Z.; Li, Z.; Tang, X.; Yu, H.; Sun, Y.; Fan, S.; et al. A Quantitative Evaluation of Shale Gas Content in Different Occurrence States of the Longmaxi Formation: A New Insight from Well JY-A in the Fuling Shale Gas Field, Sichuan Basin. Acta Geol. Sin. Engl. Ed. 2019, 93, 400–419. [Google Scholar] [CrossRef]
- Li, C.Y. Analysis of Affecting Factors and Productivity Prediction of Shale Gas Well in ZT Block. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2020. [Google Scholar]
Parameter | Unit | Sampling Quantity | Min | Max | Average | Standard Deviation |
---|---|---|---|---|---|---|
EUR | 108 m3 | 121 | 0.31 | 2.22 | 1.06 | 0.38 |
Long 111 interval thickness | m | 121 | 2.40 | 7.60 | 5.37 | 1.37 |
TOC | % | 121 | 3.30 | 6.75 | 5.22 | 0.53 |
Brittle mineral content | % | 121 | 63 | 96 | 83 | 5.43 |
Gas content | m3/t | 121 | 5.43 | 10.30 | 7.34 | 1.03 |
Gas saturation | % | 121 | 71 | 84 | 76 | 3.60 |
Pressure coefficient | dimensionless | 121 | 1.40 | 2.05 | 1.74 | 0.18 |
Drilled length of the Long 111 interval | m | 121 | 482 | 2515 | 1593 | 344.75 |
Fractured horizontal wellbore length | m | 121 | 899 | 2577 | 1664 | 328.16 |
Fracturing stage quantity | Stages | 121 | 16 | 36 | 23 | 4.36 |
Liquid injection intensity | m3/m | 121 | 16 | 48 | 27 | 4.13 |
Proppant injection intensity | t/m | 121 | 1.08 | 3.50 | 2.08 | 0.52 |
EUR | Long 111 Interval Thickness | TOC | Brittle Mineral Content | Gas Content | Gas Saturation | Pressure Coefficient | Drilled Length of the Long 111 Interval | Fractured Horizontal Wellbore Length | Fracturing Stage Quantity | Liquid Injection Intensity | Proppant Injection Intensity | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EUR | Correlation | 1.00 | 0.663 ** | (0.08) | 0.325 ** | (0.14) | 0.482 ** | 0.14 | 0.526 ** | 0.499 ** | 0.298 ** | 0.08 | 0.292 ** |
Significance | 0.00 | 0.37 | 0.00 | 0.12 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.37 | 0.00 | ||
Long 111 Interval Thickness | Correlation | 0.663 ** | 1.00 | 0.10 | 0.338 ** | 0.03 | 0.709 ** | 0.262 ** | 0.524 ** | 0.494 ** | 0.08 | −0.188 * | 0.481 ** |
Significance | 0.00 | 0.30 | 0.00 | 0.73 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.04 | 0.00 | ||
TOC | Correlation | (0.08) | 0.10 | 1.00 | (0.15) | 0.584 ** | 0.286 ** | 0.435 ** | (0.17) | (0.16) | (0.10) | 0.10 | 0.246 ** |
Significance | 0.37 | 0.30 | 0.10 | 0.00 | 0.00 | 0.00 | 0.06 | 0.09 | 0.27 | 0.29 | 0.01 | ||
Brittle Mineral Content | Correlation | 0.325 ** | 0.338 ** | (0.15) | 1.00 | −0.190 * | 0.250 ** | 0.224 * | 0.282 ** | 0.12 | 0.09 | (0.06) | (0.06) |
Significance | 0.00 | 0.00 | 0.10 | 0.04 | 0.01 | 0.01 | 0.00 | 0.18 | 0.31 | 0.54 | 0.51 | ||
Gas Content | Correlation | (0.14) | 0.03 | 0.584 ** | −0.190* | 1.00 | 0.03 | 0.595 ** | (0.12) | (0.06) | (0.12) | (0.04) | 0.232* |
Significance | 0.12 | 0.73 | 0.00 | 0.04 | 0.77 | 0.00 | 0.19 | 0.53 | 0.19 | 0.64 | 0.01 | ||
Gas Saturation | Correlation | 0.482 ** | 0.709 ** | 0.286 ** | 0.250 ** | 0.03 | 1.00 | 0.18 | 0.316 ** | 0.363 ** | 0.11 | (0.09) | 0.421 ** |
Significance | 0.00 | 0.00 | 0.00 | 0.01 | 0.77 | 0.05 | 0.00 | 0.00 | 0.23 | 0.33 | 0.00 | ||
Pressure Coefficient | Correlation | 0.14 | 0.262 ** | 0.435 ** | 0.224 * | 0.595 ** | 0.18 | 1.00 | 0.01 | (0.11) | (0.04) | (0.04) | (0.13) |
Significance | 0.14 | 0.00 | 0.00 | 0.01 | 0.00 | 0.05 | 0.90 | 0.21 | 0.69 | 0.68 | 0.17 | ||
Drilled Length of the Long 111 Interval | Correlation | 0.526 ** | 0.524 ** | (0.17) | 0.282 ** | (0.12) | 0.316 ** | 0.01 | 1.00 | 0.753 ** | 0.348 ** | (0.17) | 0.336 ** |
Significance | 0.00 | 0.00 | 0.06 | 0.00 | 0.19 | 0.00 | 0.90 | 0.00 | 0.00 | 0.06 | 0.00 | ||
Fractured Horizontal Wellbore Length | Correlation | 0.499 ** | 0.494 ** | (0.16) | 0.12 | (0.06) | 0.363 ** | (0.11) | 0.753 ** | 1.00 | 0.534 ** | −0.24 ** | 0.403 ** |
Significance | 0.00 | 0.00 | 0.09 | 0.18 | 0.53 | 0.00 | 0.21 | 0.00 | 0.00 | 0.01 | 0.00 | ||
Fracturing Stage Quantity | Correlation | 0.298 ** | 0.08 | (0.10) | 0.09 | (0.12) | 0.11 | (0.04) | 0.348 ** | 0.534 ** | 1.00 | 0.35 ** | (0.17) |
Significance | 0.00 | 0.39 | 0.27 | 0.31 | 0.19 | 0.23 | 0.69 | 0.00 | 0.00 | 0.00 | 0.06 | ||
Liquid Injection Intensity | Correlation | 0.08 | −0.188 * | 0.10 | (0.06) | (0.04) | (0.09) | (0.04) | (0.17) | −0.24 ** | 0.35 ** | 1.00 | (0.11) |
Significance | 0.37 | 0.04 | 0.29 | 0.54 | 0.64 | 0.33 | 0.68 | 0.06 | 0.01 | 0.00 | 0.22 | ||
Proppant Injection Intensity | Correlation | 0.292 ** | 0.481 ** | 0.246 ** | (0.06) | 0.232 * | 0.421 ** | (0.13) | 0.336 ** | 0.403 ** | (0.17) | (0.11) | 1.00 |
Significance | 0.00 | 0.00 | 0.01 | 0.51 | 0.01 | 0.00 | 0.17 | 0.00 | 0.00 | 0.06 | 0.22 |
Factor | Long 111 Interval Thickness | TOC | Brittle Mineral Content | Gas Content | Gas Saturation | Pressure Coefficient | Drilled Length of the Long 111 Interval | Fractured Horizontal Wellbore Length | Fracturing Stage Quantity | Liquid Injection Intensity | Proppant Injection Intensity |
---|---|---|---|---|---|---|---|---|---|---|---|
Correlation Degree | 0.810 | 0.737 | 0.771 | 0.729 | 0.774 | 0.730 | 0.790 | 0.786 | 0.766 | 0.744 | 0.744 |
Ranking | 1 | 9 | 5 | 11 | 4 | 10 | 2 | 3 | 6 | 8 | 7 |
Variance Analysis | Sum of Squares | Degree of Freedom | Mean Square | F | Significance |
---|---|---|---|---|---|
Regression | 8.933 | 7 | 1.276 | 17.697 | 1.10 × 10−15 |
Residual | 8.148 | 113 | 0.072 | ||
Total | 17.081 | 120 |
Constant | Long 111 Interval Thickness | Brittle Mineral Content | Gas Saturation | Drilled Long 111 Length | Fractured Horizontal Wellbore Length | Fracturing Stage Quantity | Proppant Injection Intensity |
---|---|---|---|---|---|---|---|
−1.008 | 0.143 | 0.006 | 0.001 | 1.6 × 10−4 | −4.9 × 10−6 | 0.018 | 0.022 |
Prediction Performance | Well No. | Testing Daily Production (104 m3/d) | First-Year Daily Production (104 m3/d) | EUR Based on the Analytical Method (108 m3) | EUR Based on MLR (108 m3) | Relative Error |
---|---|---|---|---|---|---|
Overestimation | W1 | 14.37 | 5.14 | 0.64 | 0.84 | 30.3% |
W2 | 24.93 | 11.54 | 0.98 | 1.25 | 27.5% | |
W3 | 28.57 | 10.43 | 1.08 | 1.20 | 10.8% | |
W4 | 28.56 | 10.42 | 0.90 | 1.00 | 10.5% | |
Accurate Estimation | W5 | 33.12 | 13.15 | 1.41 | 1.54 | 9.4% |
W6 | 13.98 | 6.42 | 0.89 | 0.96 | 8.4% | |
W7 | 17.58 | 6.84 | 0.87 | 0.89 | 3.0% | |
W8 | 43.55 | 14.54 | 1.58 | 1.60 | 1.4% | |
W9 | 16.41 | 7.79 | 0.90 | 0.90 | 0.7% | |
W10 | 31.43 | 13.88 | 1.36 | 1.36 | 0.0% | |
W11 | 17.45 | 8.40 | 0.97 | 0.97 | −0.3% | |
W12 | 21 | 8.28 | 0.90 | 0.88 | −2.2% | |
W13 | 32.65 | 11.83 | 1.35 | 1.31 | −3.1% | |
W14 | 21.04 | 13.50 | 1.30 | 1.20 | −8.0% | |
W15 | 22.38 | 10.72 | 1.32 | 1.19 | −9.7% | |
Underestimation | W16 | 28.19 | 10.32 | 1.08 | 0.88 | −18.6% |
W17 | 31.01 | 13.02 | 1.31 | 1.05 | −20.1% | |
W18 | 35.55 | 19.42 | 1.71 | 1.28 | −25.2% | |
W19 | 31.03 | 10.72 | 1.52 | 1.10 | −27.9% | |
W20 | 40.45 | 16.80 | 1.97 | 1.35 | −31.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, L.; Guo, W.; Zhang, X.; Liu, Y.; Shao, Z. Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China. Energies 2022, 15, 6161. https://doi.org/10.3390/en15176161
Kang L, Guo W, Zhang X, Liu Y, Shao Z. Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China. Energies. 2022; 15(17):6161. https://doi.org/10.3390/en15176161
Chicago/Turabian StyleKang, Lixia, Wei Guo, Xiaowei Zhang, Yuyang Liu, and Zhaoyuan Shao. 2022. "Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China" Energies 15, no. 17: 6161. https://doi.org/10.3390/en15176161
APA StyleKang, L., Guo, W., Zhang, X., Liu, Y., & Shao, Z. (2022). Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China. Energies, 15(17), 6161. https://doi.org/10.3390/en15176161