A New Spoke PM Motor with ECC ASPs to Reduce Flux Density Harmonics
Abstract
:1. Introduction
2. Topologies
3. Optimization Procedure of ECC ASP
3.1. Stair Equivalent Procedure
3.2. ECC ASP Equivalent Procedure
3.3. Analysis Average Torque
4. FEM Optimization and Verification
4.1. Optimization Results
4.2. FEM Verification
4.2.1. Open-Circuit Flux Density Distribution
4.2.2. Back-EMF
4.2.3. Torque Performance
4.3. Sound and Vibration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Y.; Zhu, Z.Q.; Jewell, G.W.; Chen, J.; Wu, D.; Gong, L. A Novel Spoke Asymmetric Rotor Interior Permanent Magnet Machine. IEEE Trans. Ind. Appl. 2021, 57, 4840–4851. [Google Scholar] [CrossRef]
- Qu, H.; Zhu, Z.Q.; Shuang, B. Influences of PM Number and Shape of Spoke Array PM Flux Reversal Machines. IEEE Trans. Energy Convers. 2021, 36, 1131–1142. [Google Scholar] [CrossRef]
- Xu, G.; Liu, G.; Zhao, W.; Chen, Q.; Du, X. Principle of Torque-Angle Approaching in a Hybrid Rotor Permanent-Magnet Motor. IEEE Trans. Ind. Electron. 2019, 66, 2580–2591. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, W.; Liu, G.; Zhai, F.; Chen, Q. Torque Performance Improvement of Consequent-Pole PM Motors with Hybrid Rotor Configuration. IEEE Trans. Transp. Electrif. 2021, 7, 1561–1572. [Google Scholar] [CrossRef]
- Liang, P.; Chai, F.; Yu, Y.; Chen, L. Analytical Model of a Spoke Permanent Magnet Synchronous In-Wheel Motor with Trapezoid Magnet Accounting for Tooth Saturation. IEEE Trans. Ind. Electron. 2019, 66, 1162–1171. [Google Scholar] [CrossRef]
- Hwang, K.Y.; Jo, J.H.; Kwon, B.I. A Study on Optimal Pole Design of Spoke IPMSM With Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method. IEEE Trans. Magn. 2009, 45, 4712–4715. [Google Scholar] [CrossRef]
- Zeng, Y.; Cheng, M.; Liu, G.; Zhao, W. Effects of Magnet Shape on Torque Capability of Surface-Mounted Permanent Magnet Machine for Servo Applications. IEEE Trans. Ind. Electron. 2020, 67, 2977–2990. [Google Scholar] [CrossRef]
- Liu, G.; Du, X.; Zhao, W.; Chen, Q. Reduction of Torque Ripple in Inset Permanent Magnet Synchronous Motor by Magnets Shifting. IEEE Trans. Magn. 2017, 53, 1–13. [Google Scholar] [CrossRef]
- Feng, G.; Lai, C.; Tan, X.; Wang, B.; Kar, N.C. Optimal Current Modeling and Identification for Fast and Efficient Torque Ripple Minimization of PMSM Using Theoretical and Experimental Models. IEEE Trans. Ind. Electron. 2021, 68, 11806–11816. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Zhao, W.; Chen, Q.; Xu, G. Third Harmonic Current Injection in Fault-Tolerant Five-Phase Permanent-Magnet Motor Drive. IEEE Trans. Power Electron. 2018, 33, 6970–6979. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, Y.; Liu, G.; Xu, G. Design of a New Fault-Tolerant Permanent Magnet Machine with Optimized Salient Ratio and Reluctance Torque Ratio. IEEE Trans. Ind. Electron. 2020, 67, 6043–6054. [Google Scholar] [CrossRef]
- Liu, G.; Zhai, F.; Chen, Q.; Xu, G. Torque Pulsation Reduction in Fractional-Slot Concentrated-Windings IPM Motors by Lowering Sub-Harmonics. IEEE Trans. Energy Convers. 2019, 34, 2084–2095. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.; Liu, G.; Zhai, F.; Eduku, S. Reduction of Torque Ripple Caused by Slot Harmonics in FSCW Spoke FPM Motors by Assisted Poles. IEEE Trans. Ind. Electron. 2020, 67, 9613–9622. [Google Scholar] [CrossRef]
- Jiang, J.W.; Bilgin, B.; Yang, Y.; Sathyan, A.; Dadkhah, H.; Emadi, A. Rotor skew pattern design and optimisation for cogging torque reduction. IET Electr. Syst. Transp. 2016, 6, 126–135. [Google Scholar] [CrossRef]
- Chu, W.Q.; Zhu, Z.Q. Reduction of On-Load Torque Ripples in Permanent Magnet Synchronous Machines by Improved Skewing. IEEE Trans. Magn. 2013, 49, 3822–3825. [Google Scholar] [CrossRef]
- Tavana, N.R.; Shoulaie, A.; Dinavahi, V. Analytical Modeling and Design Optimization of Linear Synchronous Motor with Stair-Step-Shaped Magnetic Poles for Electromagnetic Launch Applications. IEEE Trans. Plasma Sci. 2012, 40, 519–527. [Google Scholar] [CrossRef]
- Liu, G.; Zeng, Y.; Zhao, W.; Ji, J. Permanent Magnet Shape Using Analytical Feedback Function for Torque Improvement. IEEE Trans. Ind. Electron. 2018, 65, 4619–4630. [Google Scholar] [CrossRef]
- Wang, K.; Gu, Z.Y.; Zhu, Z.Q.; Wu, Z.Z. Optimum Injected Harmonics into Magnet Shape in Multiphase Surface-Mounted PM Machine for Maximum Output Torque. IEEE Trans. Ind. Electron. 2017, 64, 4434–4443. [Google Scholar] [CrossRef]
- Isfahani, A.; Vaez-Zadeh, S.; Rahman, M. Using Modular Poles for Shape Optimization of Flux Density Distribution in Permanent-Magnet Machines. IEEE Trans. Magn. 2008, 44, 2009–2015. [Google Scholar] [CrossRef]
- Kong, X.; Hua, Y.; Zhang, Z.; Wang, C.; Liu, Y. Analytical Modeling of High-Torque-Density Spoke Permanent Magnet In-Wheel Motor Accounting for Rotor Slot and Eccentric Magnetic Pole. IEEE Trans. Transp. Electrif. 2021, 7, 2683–2693. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.; Zhai, F.; Liu, G. Novel Spoke PM Motor with Auxiliary Salient Poles for Low Torque Pulsation. IEEE Trans. Ind. Electron. 2020, 67, 4762–4773. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.; Liu, G.; Zhao, W.; Liu, L.; Lin, Z. Torque Ripple Reduction in Five-Phase IPM Motors by Lowering Interactional MMF. IEEE Trans. Ind. Electron. 2018, 65, 8520–8531. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Z.Q.; Ombach, G.; Chlebosz, W. Average Torque Improvement of Interior Permanent-Magnet Machine Using Third Harmonic in Rotor Shape. IEEE Trans. Ind. Electron. 2014, 61, 5047–5057. [Google Scholar] [CrossRef]
- Mao, Y.; Zhao, W.; Zhu, S.; Chen, Q.; Ji, J. Vibration Investigation of Spoke PM Machine with Asymmetric Rotor Considering Modulation Effect of Stator Teeth. IEEE Trans. Ind. Electron. 2021, 68, 9092–9103. [Google Scholar] [CrossRef]
Items | Model 1 | Model 2 |
---|---|---|
Stator slots/rotor poles | 40/8 | 40/8 |
Rated speed (r/min) | 1500 | 1500 |
Rated current (A) | 10.8 | 10.8 |
Stack length (mm) | 46 | 46 |
Stator outer diameter (mm) | 155 | 155 |
Stator inner diameter (mm) | 98 | 98 |
Minimum air-gap length (mm) | 0.5 | 0.5 |
The pole-arc ratio of the ASP | 0 | 0.75 |
Depth of the ASP hm (mm) | 0 | 2.5 |
Numbers of turns per slot | 40 | 40 |
Phase resistance at 21 °C (Ω) | 0.5 | 0.5 |
Iron core material | DW470_50 | DW470_50 |
The thickness of the PM (mm) | 3 | 3 |
Width of the PM (mm) | 10 | 10 |
PM material | N35 | N35 |
Remanence of the PM (T) | 1.23 | 1.23 |
Item | Nseg = 9 | Nseg = 11 | Nseg = 13 |
---|---|---|---|
n0 | 0.995 | 0.997 | 0.998 |
n1 | 0.935 | 0.956 | 0.969 |
n2 | 0.762 | 0.838 | 0.883 |
n3 | 0.497 | 0.653 | 0.747 |
n4 | 0.173 | 0.414 | 0.567 |
n5 | 0.142 | 0.354 | |
n6 | 0.120 |
Item | Traditional ECC | ECC ASP |
---|---|---|
lavg (mm) | 8.61 | 10.97 |
Average torque (Nm) | 11.56 | 11.91 |
Torque pulsation (%) | 12.89 | 1.68 |
Item | 1st (T) | 9th (T) | 11th (T) | 19th (T) | 21st (T) |
---|---|---|---|---|---|
Model 1 | 0.685 | 0.052 | 0.034 | 0.002 | 0.006 |
Model 2 | 0.728 | 0.058 | 0.032 | 0.018 | 0.002 |
Model 3 | 0.696 | 0.003 | 0.003 | 0.00004 | 0.001 |
Item | 1st (V) | 9th (V) | 11th (V) | 19th (V) | 21st (V) |
---|---|---|---|---|---|
Model 1 | 74.68 | 7.05 | 4.97 | 4.33 | 0.02 |
Model 2 | 78.79 | 12.14 | 5.08 | 1.01 | 2.44 |
Model 3 | 70.74 | 1.57 | 0.76 | 0.51 | 0.39 |
Item | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Average torque (Nm) | 14.38 | 13.41 | 11.91 |
10th (Nm) | 5.44 | 3.58 | 0.0005 |
20th (Nm) | 0.32 | 0.66 | 0.04 |
Torque pulsation (%) | 70.0 | 51.0 | 1.7 |
Torque Loss (%) | 0 | 6.7 | 17.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Tang, T.; Chen, Q.; Jia, Z. A New Spoke PM Motor with ECC ASPs to Reduce Flux Density Harmonics. Energies 2022, 15, 6184. https://doi.org/10.3390/en15176184
Xu G, Tang T, Chen Q, Jia Z. A New Spoke PM Motor with ECC ASPs to Reduce Flux Density Harmonics. Energies. 2022; 15(17):6184. https://doi.org/10.3390/en15176184
Chicago/Turabian StyleXu, Gaohong, Tang Tang, Qian Chen, and Zexin Jia. 2022. "A New Spoke PM Motor with ECC ASPs to Reduce Flux Density Harmonics" Energies 15, no. 17: 6184. https://doi.org/10.3390/en15176184
APA StyleXu, G., Tang, T., Chen, Q., & Jia, Z. (2022). A New Spoke PM Motor with ECC ASPs to Reduce Flux Density Harmonics. Energies, 15(17), 6184. https://doi.org/10.3390/en15176184