On the Importance of Grid Tariff Designs in Local Energy Markets
Abstract
:1. Introduction
1.1. Related Work
1.2. Scope and Contributions
2. Method
2.1. Overview
2.2. Scenario Generation
2.3. LEM Market Model
2.4. Scenarios
2.4.1. Business as Usual
2.4.2. LEM Scenarios
- (a)
- Flat: In this scenario, the full REPCs (24.17 ct/kWh) are applied for each consumed kWh of a participant from outside the participant’s energy system. This can be viewed as a benchmark case, without a reduction or adaption of grid tariff design.
- (b)
- Feeder: This scenario describes a reduction of energy fees for trades within the same feeder. It is based on similar new regulations in Austria [17]; the height of the reduction is the reduction of the constant energy tax in Germany of 2.05 ct/kWh, including a reduction VAT. Participant energy fees (blue line) are set to 21.74 ct/kWh, and feeder fees (orange line) to 2.44 ct/kWh.
- (c)
- Variable: An adaption of participant energy fees based on the time-variable Wholesale Electricity Market (WEM) is considered in this scenario. The fees are adapted using the following formula: , with as the wholesale market price at timestep t, a constant base value (21.74 ct/kWh) and as a variable adaption constant (2.44 ct/kWh).
- (d)
- Power: This scenario combines a flat energy fee with power fees for demand and generation at a virtual connection point of the LEM to the backup energy supply. The overall paid power fees over the simulation horizon (one year) are distributed among the participants who contributed to the five highest peaks in a postprocessing step. A power fee of 3.7 €/kW is assumed based on [36] as well as an average connection capacity of 15 kW.
2.5. Evaluation Metrics
3. Results
3.1. Examplary Operational Differences
3.2. Comparison of Residual Load and Power Peaks
3.3. Evaluation of Financial Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rural | Semiurban | Urban | ||
---|---|---|---|---|
Parameter | Type/Unit | |||
Grid connection points | Count (-) | 96 | 110 | 58 |
Residential loads | Count (-) | 92 | 92 | 102 |
Commercial loads | Count (-) | 7 | 12 | 9 |
Photovoltaic systems | Rated power (kW) | 185.7 | 202.7 | 93.8 |
Count (-) | 19 | 30 | 19 | |
Heat pumps | Rated power (kW) | 16.8 | 19.8 | 13.8 |
Count (-) | 5 | 5 | 3 | |
share | 5.1 | 4.8 | 2.7 | |
Electric vehicles | Rated power (kW) | 22.0 | 29.2 | 0 |
Count (-) | 1 | 1 | 0 | |
Battery | Rated power (kW) | 20.7 | 55.0 | 11.3 |
Count (-) | 8 | 15 | 7 | |
Capacity (kWh) | 41.4 | 110.1 | 22.6 | |
Electric load | Energy (MWh) | 257.9 | 470.3 | 530.9 |
Thermal load | Energy (MWh) | 19.1 | 31.2 | 27.7 |
Electric load EV | Energy (MWh) | 4.6 | 3.3 | 0.0 |
Rural | Semiurban | Urban | ||
---|---|---|---|---|
Parameter | Type/Unit | |||
Grid connection points | Count (-) | 96 | 110 | 58 |
Residential loads | Count (-) | 92 | 92 | 102 |
Commercial loads | Count (-) | 7 | 12 | 9 |
Photovoltaic systems | Rated power (kW) | 236.0 | 284.8 | 139.6 |
Count (-) | 19 | 30 | 19 | |
Heat pumps | Rated power (kW) | 38.6 | 26.7 | 15.8 |
Count (-) | 6 | 7 | 4 | |
share | 6.1 | 6.7 | 3.6 | |
Electric vehicles | Rated power (kW) | 80.4 | 91.3 | 82.3 |
Count (-) | 11 | 12 | 6 | |
Battery | Rated power (kW) | 46.5 | 123.9 | 25.4 |
Count (-) | 8 | 15 | 7 | |
Capacity (kWh) | 93.2 | 247.8 | 50.8 | |
Electric load | Energy (MWh) | 257.9 | 470.3 | 530.9 |
Thermal load | Energy (MWh) | 37.8 | 42.0 | 33.7 |
Electric load EV | Energy (MWh) | 40.1 | 30.7 | 20.8 |
Rural | Semiurban | Urban | ||
---|---|---|---|---|
Parameter | Type/Unit | |||
Grid connection points | Count (-) | 96 | 110 | 58 |
Residential loads | Count (-) | 92 | 92 | 102 |
Commercial loads | Count (-) | 7 | 12 | 9 |
Photovoltaic systems | Rated power (kW) | 286.4 | 366.8 | 185.4 |
Count (-) | 19 | 30 | 19 | |
Heat pumps | Rated power (kW) | 102.0 | 63.2 | 41.6 |
Count (-) | 13 | 15 | 8 | |
share | 13.1 | 14.4 | 7.2 | |
Electric vehicles | Rated power (kW) | 157.1 | 175.2 | 122.4 |
Count (-) | 22 | 23 | 11 | |
Battery | Rated power (kW) | 72.3 | 192.7 | 39.5 |
Count (-) | 8 | 15 | 7 | |
Capacity (kWh) | 144.9 | 385.4 | 79.1 | |
Electric load | Energy (MWh) | 257.9 | 470.3 | 530.9 |
Thermal load | Energy (MWh) | 101.8 | 98.7 | 64.3 |
Electric load EV | Energy (MWh) | 75.2 | 62.7 | 36.7 |
Appendix B
Appendix C
References
- Bundesnetzagentur. Genehmigung Des Szenariorahmens 2023–2037/2045; Bundesnetzagentur: Bonn, Germany, 2022.
- Thormann, B.; Kienberger, T. Evaluation of Grid Capacities for Integrating Future E-Mobility and Heat Pumps into Low-Voltage Grids. Energies 2020, 13, 5083. [Google Scholar] [CrossRef]
- Navigant Kompetenzzentrum Elektromobilität und RE-Xpertise. Verteilnetzausbau für Die Energiewende–Elektromobilität im Fokus. Studie im Auftrag von Agora Verkehrswende, Agora Energiewende und The Regulatory Assistance Project (RAP); Agora Energiewende: Berlin, Germany, 2019. [Google Scholar]
- Eid, C.; Koliou, E.; Valles, M.; Reneses, J.; Hakvoort, R. Time-Based Pricing and Electricity Demand Response: Existing Barriers and next Steps. Util. Policy 2016, 40, 15–25. [Google Scholar] [CrossRef]
- BDEW Bundesverband der Energie-und Wasserwirtschaft e.V. BDEW-Strompreisanalyse January 2020; Haushalt und Industrie: Berlin, Germany, 2020. [Google Scholar]
- Andruszkiewicz, J.; Lorenc, J.; Weychan, A. Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles. Energies 2019, 12, 4317. [Google Scholar] [CrossRef]
- Parag, Y.; Sovacool, B.K. Electricity Market Design for the Prosumer Era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- Lezama, F.; Soares, J.; Hernandez-Leal, P.; Kaisers, M.; Pinto, T.; Almeida do Vale, Z.M. Local Energy Markets: Paving the Path Towards Fully Transactive Energy Systems. IEEE Trans. Power Syst. 2018, 8950, 4081–4088. [Google Scholar] [CrossRef]
- Sorin, E.; Bobo, L.; Pinson, P. Consensus-Based Approach to Peer-to-Peer Electricity Markets with Product Differentiation. IEEE Trans. Power Syst. 2019, 34, 994–1004. [Google Scholar] [CrossRef]
- Luo, F.; Dong, Z.Y.; Liang, G.; Murata, J.; Xu, Z. A Distributed Electricity Trading System in Active Distribution Networks Based on Multi-Agent Coalition and Blockchain. IEEE Trans. Power Syst. 2019, 34, 4097–4108. [Google Scholar] [CrossRef]
- Morstyn, T.; McCulloch, M. Multi-Class Energy Management for Peer-to-Peer Energy Trading Driven by Prosumer Preferences. IEEE Trans. Power Syst. 2018, 34, 4005–4014. [Google Scholar] [CrossRef]
- Liu, N.; Yu, X.; Wang, C.; Li, C.; Ma, L.; Lei, J. Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers. IEEE Trans. Power Syst. 2017, 32, 3569–3583. [Google Scholar] [CrossRef]
- El-Baz, W.; Tzscheutschler, P.; Wagner, U. Integration of Energy Markets in Microgrids: A Double-Sided Auction with Device-Oriented Bidding Strategies. Appl. Energy 2019, 241, 625–639. [Google Scholar] [CrossRef]
- Abrishambaf, O.; Lezama, F.; Faria, P.; Vale, Z. Towards Transactive Energy Systems: An Analysis on Current Trends. Energy Strategy Rev. 2019, 26, 100418. [Google Scholar] [CrossRef]
- Tushar, W.; Saha, T.K.; Yuen, C.; Smith, D.; Poor, H.V. Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE Trans. Smart Grid 2020, 3053, 3185–3200. [Google Scholar] [CrossRef]
- Freier, J.; Arnold, M.; Hesselbach, J. Introduction of an Approach to Develop Dynamic Electricity Prices for Residential Customers. In Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 18–20 September 2019; pp. 1–6. [Google Scholar]
- E-Control. Federal Act Providing New Rules for the Organisation of the Electricity Sector (Electricity Act 2010—EIWOG 2010), BGB1.1 110/2012; E-Control: Vienna, Austria, 2021. [Google Scholar]
- Schreck, S.; Thiem, S.; Amthor, A.; Metzger, M.; Stefan, N. Analyzing Potential Schemes for Regulated Electricity Price Components in Local Energy Markets. In Proceedings of the International Conference on the European Energy Market, EEM, Stockholm, Sweden, 16–18 September 2020. [Google Scholar]
- Bjarghov, S.; Farahmand, H.; Doorman, G. Capacity Subscription Grid Tariff Efficiency and the Impact of Uncertainty on the Subscribed Level. Energy Policy 2022, 165, 112972. [Google Scholar] [CrossRef]
- Cramer, W.; Schumann, K.; Andres, M.; Vertgewall, C.; Monti, A.; Schreck, S.; Metzger, M.; Jessenberger, S.; Klaus, J.; Brunner, C.; et al. A Simulative Framework for a Multi-Regional Assessment of Local Energy Markets—A Case of Large-Scale Electric Vehicle Deployment in Germany. Appl. Energy 2021, 299, 117249. [Google Scholar] [CrossRef]
- Wesseh, P., Jr.; Chen, J.; Lin, B. Peak-Valley Tariffs and Solar Prosumers: Why Renewable Energy Policies Should Target Local Electricity Markets. SSRN Electron. J. 2022, 165, 112984. [Google Scholar] [CrossRef]
- Li, K.; Cursio, J.D.; Jiang, M.; Liang, X. The Significance of Calendar Effects in the Electricity Market. Appl. Energy 2019, 235, 487–494. [Google Scholar] [CrossRef]
- Maldet, M.; Revheim, F.H.; Schwabeneder, D.; Lettner, G.; del Granado, P.C.; Saif, A.; Löschenbrand, M.; Khadem, S. Trends in Local Electricity Market Design: Regulatory Barriers and the Role of Grid Tariffs. J. Clean. Prod. 2022, 358, 131805. [Google Scholar] [CrossRef]
- Meinecke, S.; Sarajlić, D.; Drauz, S.R.; Klettke, A.; Lauven, L.P.; Rehtanz, C.; Moser, A.; Braun, M. SimBench-A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis. Energies 2020, 13, 3290. [Google Scholar] [CrossRef]
- Bundesnetzagentur. Genehmigung Des Szenariorahmens 2021–2035; Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bonn, Germany, 2020.
- Fourer, R.; Gay, D.M.; Kernighan, B.W. AMPL: A Mathematical Programing Language. In Algorithms and Model Formulations in Mathematical Programming; AT&T Bell Laboratories: Murray Hill, NJ, USA, 1989; pp. 150–151. [Google Scholar] [CrossRef]
- Bestuzheva, K.; Besançon, M.; Chen, W.-K.; Chmiela, A.; Donkiewicz, T.; van Doornmalen, J.; Eifler, L.; Gaul, O.; Gamrath, G.; Gleixner, A.; et al. The SCIP Optimization Suite 8.0. arXiv 2021, arXiv:2112.08872. [Google Scholar]
- Maher, S.; Miltenberger, M.; Pedroso, J.P.; Rehfeldt, D.; Schwarz, R.; Serrano, F. PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2016; Volume 9725, pp. 301–307. [Google Scholar] [CrossRef] [Green Version]
- Nobis, C.; Kuhnimhof, T. Mobilität in Deutschland MiD Ergebnisbericht; Studie von Infas, DLR, IVT und Infas 360 im Auftrag des Bundesministers für Verkehr und Digitale Infrastruktur (FE-Nr. 70.904/15); Bundesministers für Verkehr und Digitale Infrastruktur: Bonn, Germany, 2018; p. 135. [Google Scholar]
- Infas; DLR; IVT; Infas 360. Mobilität in Tabellen (MiT 2017); Dataset; Bndesministers für Verkehr und Digitale Infrastruktur: Bonn, Germany, 2017. [Google Scholar]
- Schmidt, A. Flottenbetrieb von Elektrischen und Autonomen Serviceagenten im Städtischen Personennahverkehr. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2017. [Google Scholar]
- Bundesnetzagentur. Archivierte EEG Vergütungssätze und Datenmeldungen. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/ArchivDatenMeldgn/artikel.html (accessed on 9 May 2022).
- Übertragungsnetzbetreiber (DE) EEG-Anlagenstammdaten. Available online: https://www.netztransparenz.de/EEG/Anlagenstammdaten (accessed on 4 March 2022).
- Schreck, S.; Thiem, S.; Amthor, A.; Metzger, M.; Niessen, S. Activating Current and Future Flexibility Potential in the Distribution Grid through Local Energy Markets. In Proceedings of the CIRED 2020 Berlin Workshop (CIRED 2020), Online, 22–23 September 2020; IET: London, UK, 2020. [Google Scholar] [CrossRef]
- Bertsch, V.; Geldermann, J.; Lühn, T. What Drives the Profitability of Household PV Investments, Self-Consumption and Self-Sufficiency? Appl. Energy 2017, 204, 1–15. [Google Scholar] [CrossRef]
- Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen; Bundeskartellamt. Monitoringbericht 2021; Monitoringbericht Gemäß § 63 Abs. 3 i.V.m. § 35 EnWG Und § 48 Abs. 3 i.V.m. § 53 Abs. 3 GWB; Bundesnetzagentur: Bonn, Germany, 2022.
- Gemassmer, J.; Daam, C.; Reibsch, R. Challenges in Grid Integration of Electric Vehicles in Urban and Rural Areas. World Electr. Veh. J. 2021, 12, 206. [Google Scholar] [CrossRef]
- Schmitt, C.; Samaan, K.; Schwaeppe, H.; Moser, A. Bottom-up Modeling of Local Energy Markets within a Pan-European Wholesale Electricity Market Model. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia, 28 September–1 October 2020; pp. 631–636. [Google Scholar] [CrossRef]
- Bundesminiterium der Justiz Gesetz für den Ausbau Erneuerbarer Energien. (Erneuerbare-Energien-Gesetz—EEG 2021)\S 49 Absenkung der Anzulegenden Werte für Strom aus Solarer Strahlungsenergie. In EEG-Erneuerbare-Energien-Gesetz Kommentar; Erich Schmidt Verlag: Berlin, Germany, 2018. [Google Scholar]
Rural | Semiurban | Urban | ||
---|---|---|---|---|
Parameter | Type/Unit | |||
Grid connection points | Count (-) | 96 | 110 | 58 |
Residential loads | Count (-) | 92 | 92 | 102 |
Commercial loads | Count (-) | 7 | 12 | 9 |
Photovoltaic systems | Rated power (kW) | 326.7 | 432.4 | 222.1 |
Count (-) | 19 | 30 | 19 | |
Heat pumps | Rated power (kW) | 138.1 | 100.9 | 63.4 |
Count (-) | 24 | 27 | 14 | |
share | 24.2 | 26.0 | 12.6 | |
Electric vehicles | Rated power (kW) | 241.0 | 262.8 | 166.2 |
Count (-) | 33 | 35 | 17 | |
Battery | Rated power (kW) | 93.0 | 247.7 | 50.8 |
Count (-) | 8 | 15 | 7 | |
Capacity (kWh) | 186.3 | 495.5 | 101.7 | |
Electric load | Energy (MWh) | 257.9 | 470.3 | 530.9 |
Thermal load | Energy (MWh) | 159.5 | 166.9 | 102.0 |
Electric load EV | Energy (MWh) | 111.2 | 90.6 | 62.0 |
Order | Parameter | Unit | Description |
---|---|---|---|
All | (-) | Valid time period, start and end timesteps of order | |
Buy | (ct/kWh) | Maximum buy price for each timestep | |
(kW) | Maximum power input for each timestep | ||
(kWh) | Requested energy within time period T | ||
Sell | (ct/kWh) | Minimum sell price for each timestep | |
(kW) | Maximum power output for each timestep | ||
(kWh) | Offered energy within time period T | ||
Storage | (kWh) | Storage capacity | |
(kWh) | Initial storage capacity | ||
(kW) | Maximum charging power | ||
(kW) | Maximum discharging power | ||
(-) | Charge and discharge efficiency | ||
(ct/kWh) | Minimum discharge price |
Grid Tariff Designs | ||||
---|---|---|---|---|
Flat | Feeder | Variable | Power | |
Advantages | Low implementation effort | Incentives trades within close spatial proximity. Generates spatially resolved investment signals. | Allows market coupling with wholesale market. Incentivation of flexibility usage. | High incentivization to reduce demand and feed-in peaks. Allows for clear renumeration of flexibility provision. |
Disadvantages | No incentivization of grid-friendly behavior | Moderate implementation efforts. | High implementation efforts. | High implementation efforts. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreck, S.; Sudhoff, R.; Thiem, S.; Niessen, S. On the Importance of Grid Tariff Designs in Local Energy Markets. Energies 2022, 15, 6209. https://doi.org/10.3390/en15176209
Schreck S, Sudhoff R, Thiem S, Niessen S. On the Importance of Grid Tariff Designs in Local Energy Markets. Energies. 2022; 15(17):6209. https://doi.org/10.3390/en15176209
Chicago/Turabian StyleSchreck, Sebastian, Robin Sudhoff, Sebastian Thiem, and Stefan Niessen. 2022. "On the Importance of Grid Tariff Designs in Local Energy Markets" Energies 15, no. 17: 6209. https://doi.org/10.3390/en15176209
APA StyleSchreck, S., Sudhoff, R., Thiem, S., & Niessen, S. (2022). On the Importance of Grid Tariff Designs in Local Energy Markets. Energies, 15(17), 6209. https://doi.org/10.3390/en15176209