Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell
Abstract
:1. Introduction
2. Design of GDL with Different PTFE Doping Strategies
3. Numerical Model
3.1. Fuel Cell Model
3.2. Computational Domain and Boundary Conditions
3.3. Grid Independent Test
4. Results and Discussion
4.1. Effects of the PTFE Content
4.2. Effects of Through-Plane PTFE Gradient Doping
4.3. Effects of Sandwich PTFE Doping
4.4. Effects on the Fuel Cell Performance and Current Density Distribution Uniformity
5. Conclusions
- (1)
- The results show that the GDL design idea of water-cooled fuel cells cannot meet the demand of air-cooled fuel cells. In the PTFE uniformly doping designs, properly reducing the amount of PTFE in GDL is beneficial to promoting the performance of air-cooled fuel cells by improving the water retaining capacity;
- (2)
- Compared with the design of GDL with 40% PTFE uniformly doped, the in-plane sandwich design of GDL can improve the performance of fuel cells. However, the performance of air-cooled fuel cells with in-plane sandwich GDL design is inferior compared with the uniform PTFE doping design with the least content of PTFE. Between the two sandwich designs, less PTFE doping in GDL under the GC holds a slight advantage for improving the performance of the fuel cell;
- (3)
- Water retention capacity of the air-cooled fuel cell can be improved by linearly increasing the PTFE content from the GDL/MPL interface to the GC/GDL interface. This design effectively increases the water content of the membrane electrode assembly and, compared with the design of GDL with 40% PTFE uniformly doped, the current density is improved by 22% when operating at 0.6 V;
- (4)
- Finally, the effects of different GDL designs on the uniformity of current density distribution are compared. Air-cooled fuel cells with in-plane sandwich PTFE doping GDL perform poorly in the uniformity of current density distribution. The through-plane gradient PTFE doping design with the PTFE content linearly decreasing from the GDL/MPL interface to GC/GDL shows the best current density uniformity by sacrificing the performance. In addition to improving performance, a design with linearly increasing PTFE content along the GDL/MPL interface to the GC/GDL interface can also maintain a good uniformity of current density distribution in CCL.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a | Water activity |
A | Area, m2 |
C | Molar concentration, mol m3 |
cp | Specific heat capacity, J kg−1 K−1 |
D | Mass diffusivity, m2 s−1 |
EW | Equivalent weight of membrane, kg mol−1 |
F | Faraday’s constant, 96,487 C mol−1 |
h | Latent heat, J kg−1 |
I | Current density, A m−2 |
j | Reaction rate, A m−3 |
j0 | Volumetric exchange current density, A m−3 |
k | Thermal conductivity, W m−1 K−1 |
K | Permeability, m2 |
Mass flow rate, kg m−2 s−1 | |
M | Molecular weight, g mol−1 |
n | Electro-osmotic drag coefcient |
P | Pressure, Pa |
R | Universal gas constant, 8.314 J mol−1 K−1 |
s | Liquid water saturation |
T | Temperature, K |
X | Mass fraction |
Greek letters | |
α | Transfer coefficient |
δ | Components thickness (μm) |
ε | Porosity |
η | Overpotential (V) |
φ | Potential (V) |
κ | Conductivity (S m−1) |
λ | Dissolved water content |
μ | Dynamic viscosity |
ρ | Density (kg m−3) |
σ | Surface tension coefficient (N m−1) |
ω | Ionomer volume fraction |
ξ | Stoichiometric ratio |
ω | Ionomer volume fraction |
Abbreviations | |
PEMFC | Polymer electrolyte membrane fuel cell |
UAVs | Unmanned Aerial Vehicles |
PTFE | Polytetrafluoroethylene |
BP | Bipolar plate |
CC | Cooling channel |
CGC | Cathode gas channel |
GC | Gas channel |
GDL | Gas diffusion layer |
MPL | Micro porous layer |
CL | Catalyst layer |
PEM | Proton exchange membrane |
References
- Toghyani, S.; Atyabi, S.A.; Gao, X. Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field. Energies 2021, 14, 2494. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Lu, Z. Thermal management issues in a PEMFC stack—A brief review of current status. Appl. Therm. Eng. 2009, 29, 1276–1280. [Google Scholar] [CrossRef]
- Berning, T.; Knudsen Kær, S. A Thermodynamic Analysis of an Air-Cooled Proton Exchange Membrane Fuel Cell Operated in Different Climate Regions. Energies 2020, 13, 2611. [Google Scholar] [CrossRef]
- Al-Zeyoudi, H.; Sasmito, A.P.; Shamim, T. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates. Energy Convers. Manag. 2015, 105, 798–809. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Z.; Wang, X.; Zhang, J. A Molecular Model of PEMFC Catalyst Layer: Simulation on Reactant Transport and Thermal Conduction. Membranes 2021, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Kong, I.M.; Choi, J.W.; Kim, S.I.; Lee, E.S.; Kim, M.S. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer. Appl. Energy 2015, 145, 345–353. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Peng, L.; Zhang, J.; Shao, Z.; Huang, J.; Sun, C.; Ouyang, M.; He, X. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications. Energies 2016, 9, 603. [Google Scholar] [CrossRef]
- Ozden, A.; Shahgaldi, S.; Li, X.; Hamdullahpur, F. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 2019, 74, 50–102. [Google Scholar] [CrossRef]
- Zenyuk, I.V.; Parkinson, D.Y.; Connolly, L.G.; Weber, A.Z. Gas-diffusion-layer structural properties under compression via X-ray tomography. J. Power Sources 2016, 328, 364–376. [Google Scholar] [CrossRef]
- Strahl, S.; Costa-Castelló, R. Temperature control of open-cathode PEM fuel cells. IFAC Pap. 2017, 50, 11088–11093. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Guo, L.; Zhang, R.; Chen, L.; Tao, W.-Q. Numerically investigating two-phase reactive transport in multiple gas channels of proton exchange membrane fuel cells. Appl. Energy 2021, 302, 117625. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, T.; Sui, P.-C.; Xiao, J. A numerical investigation on the effects of water inlet location and channel surface properties on water transport in PEMFC cathode channels. Int. J. Hydrogen Energy 2016, 41, 16220–16229. [Google Scholar] [CrossRef]
- Molaeimanesh, G.; Akbari, M.H. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method. Korean J. Chem. Eng. 2014, 31, 598–610. [Google Scholar] [CrossRef]
- Chen, L.; He, Y.-L.; Tao, W.-Q. Effects of surface microstructures of gas diffusion layer on water droplet dynamic behaviors in a micro gas channel of proton exchange membrane fuel cells. Int. J. Heat Mass Transf. 2013, 60, 252–262. [Google Scholar] [CrossRef]
- Chen, L.; Luan, H.; He, Y.-L.; Tao, W.-Q. Effects of Roughness of Gas Diffusion Layer Surface on Liquid Water Transport in Micro Gas Channels of a Proton Exchange Membrane Fuel Cell. Numer. Heat Transf. Part A Appl. 2012, 62, 295–318. [Google Scholar] [CrossRef]
- Mortazavi, M.; Tajiri, K. Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells (PEFCs). J. Power Sources 2014, 245, 236–244. [Google Scholar] [CrossRef]
- Yu, J.; Froning, D.; Reimer, U.; Lehnert, W. Polytetrafluorethylene effects on liquid water flowing through the gas diffusion layer of polymer electrolyte membrane fuel cells. J. Power Sources 2019, 438, 226975. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, L.; Niu, Z.; Bao, Z.; Sun, X.; Liu, Z.; Li, Y.; Jiao, K.; Liu, Z.; Du, Q. Effects of surface wettability on two-phase flow in the compressed gas diffusion layer microstructures. Int. J. Heat Mass Transf. 2020, 151, 119370. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; He, W.; Wang, S.; Liu, S.; Yue, L.; Li, H. Performance enhancement of polymer electrolyte membrane fuel cells with a hybrid wettability gas diffusion layer. Energy Convers. Manag. 2020, 223, 113297. [Google Scholar] [CrossRef]
- Guo, L.; Chen, L.; Zhang, R.; Peng, M.; Tao, W.-Q. Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity. Energy 2022, 253, 124101. [Google Scholar] [CrossRef]
- Meyer, Q.; Ashton, S.; Boillat, P.; Cochet, M.; Engebretsen, E.; Finegan, D.P.; Lu, X.; Bailey, J.J.; Mansor, N.; Abdulaziz, R.; et al. Effect of gas diffusion layer properties on water distribution across air-cooled, open-cathode polymer electrolyte fuel cells: A combined ex-situ X-ray tomography and in-operando neutron imaging study. Electrochim. Acta 2016, 211, 478–487. [Google Scholar] [CrossRef]
- Pei, H.; Shen, J.; Cai, Y.; Tu, Z.; Wan, Z.; Liu, Z.; Liu, W. Operation characteristics of air-cooled proton exchange membrane fuel cell stacks under ambient pressure. Appl. Therm. Eng. 2014, 63, 227–233. [Google Scholar] [CrossRef]
- Wu, B.; Li, B.; Liu, W.; Liu, J.; Zhao, M.; Yao, Y.; Gu, J.; Zou, Z. The performance improvement of membrane and electrode assembly in open-cathode proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2013, 38, 10978–10984. [Google Scholar] [CrossRef]
- Park, H. Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition. Energy Convers. Manag. 2014, 81, 220–230. [Google Scholar] [CrossRef]
- Zhao, C.; Xing, S.; Liu, W.; Chen, M.; Wang, H. Performance improvement for air-cooled open-cathode proton exchange membrane fuel cell with different design parameters of the gas diffusion layer. Prog. Nat. Sci. Mater. Int. 2020, 30, 825–831. [Google Scholar] [CrossRef]
- Kong, I.M.; Jung, A.; Kim, M.S. Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells. Appl. Energy 2016, 176, 149–156. [Google Scholar] [CrossRef]
- Lee, N.; Lee, J.; Lee, S.W.; Jang, S.S.; Ju, H. Parametric study of passive air-cooled polymer electrolyte membrane fuel cell stacks. Int. J. Heat Mass Transf. 2020, 156, 119886. [Google Scholar] [CrossRef]
- Peng, M.; Chen, L.; Zhang, R.; Xu, W.; Tao, W.-Q. Improvement of thermal and water management of air-cooled polymer electrolyte membrane fuel cells by adding porous media into the cathode gas channel. Electrochim. Acta 2022, 412, 140154. [Google Scholar] [CrossRef]
- Mu, Y.-T.; He, P.; Ding, J.; Tao, W.-Q. Modeling of the operation conditions on the gas purging performance of polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2017, 42, 11788–11802. [Google Scholar] [CrossRef]
- Jiao, K.; Li, X. Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 2011, 37, 221–291. [Google Scholar] [CrossRef]
- Zhang, G.; Bao, Z.; Xie, B.; Wang, Y.; Jiao, K. Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field. Int. J. Hydrogen Energy 2021, 46, 2978–2989. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.; Yang, D.; Dai, H.; Zheng, J.P.; Ming, P.; Zhang, C. Research progress of heat transfer inside proton exchange membrane fuel cells. J. Power Sources 2021, 492, 229613. [Google Scholar] [CrossRef]
- Zhang, G.; Kandlikar, S.G. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int. J. Hydrogen Energy 2012, 37, 2412–2429. [Google Scholar] [CrossRef]
- Leverett, M.C. Capillary behavior in porous media. Trans. AIME 1941, 142, 341–358. [Google Scholar] [CrossRef]
- Ye, Q.; Nguyen, T.V. Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Functions. J. Electrochem. Soc. 2007, 154, B1242. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S. Evaluation and modeling of PEM fuel cells with the Bruggeman correlation under various tortuosity factors. Int. J. Heat Mass Transf. 2017, 105, 18–23. [Google Scholar] [CrossRef]
- He, P.; Mu, Y.-T.; Park, J.W.; Tao, W.-Q. Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell. Appl. Energy 2020, 277, 115555. [Google Scholar] [CrossRef]
- Santa Rosa, D.T.; Pinto, D.G.; Silva, V.S.; Silva, R.A.; Rangel, C.M. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions. Int. J. Hydrogen Energy 2007, 32, 4350–4357. [Google Scholar] [CrossRef]
- Lee, J.; Gundu, M.H.; Lee, N.; Lim, K.; Lee, S.W.; Jang, S.S.; Kim, J.Y.; Ju, H. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. Int. J. Hydrogen Energy 2020, 45, 11704–11713. [Google Scholar] [CrossRef]
- Zhang, R.; He, P.; Bai, F.; Chen, L.; Tao, W.-Q. Multiscale modeling of proton exchange membrane fuel cells by coupling pore-scale models of the catalyst layers and cell-scale models. Int. J. Green Energy 2021, 18, 1147–1160. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Qin, Y.; Zhang, L.; Wang, Y. Three-dimensional numerical study of a cathode gas diffusion layer with a through/in plane synergetic gradient porosity distribution for PEM fuel cells. Int. J. Heat Mass Transf. 2022, 188, 122661. [Google Scholar] [CrossRef]
- Yu, X.; Chang, H.; Zhao, J.; Tu, Z. Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell. Energy Rep. 2022, 8, 4443–4452. [Google Scholar] [CrossRef]
- Yin, C.; Gao, Y.; Li, K.; Wu, D.; Song, Y.; Tang, H. Design and numerical analysis of air-cooled proton exchange membrane fuel cell stack for performance optimization. Energy Convers. Manag. 2021, 245, 114604. [Google Scholar] [CrossRef]
- Luo, L.; Huang, B.; Bai, X.; Cheng, Z.; Jian, Q. Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers. Appl. Energy 2020, 270, 115192. [Google Scholar] [CrossRef]
- Luo, L.; Jian, Q.; Huang, B.; Huang, Z.; Zhao, J.; Cao, S. Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack. Renew. Energy 2019, 143, 1067–1078. [Google Scholar] [CrossRef]
- Ming, L.; Chaohua, D.; Ai, G.; Weirong, C. Experimental study on dynamic voltage uniformity of a 2-kW air-cooled PEMFC. Electr. Eng. 2018, 100, 2725–2735. [Google Scholar] [CrossRef]
PTFE Content (wt%) | Contact Angle | Porosity |
---|---|---|
10% | 110° | 0.73 |
20% | 130° | 0.69 |
30% | 150° | 0.65 |
40% | 162° | 0.63 |
Governing Equations | Expressions | Solution Zones |
---|---|---|
Mass | CHs, GDLs, MPLs, CLs | |
Momentum | CHs, GDLs, MPLs, CLs | |
Species | CHs, GDLs, MPLs, CLs | |
Electron | All zones | |
Proton | All zones | |
Dissolved water | CLs, PEM | |
Liquid water | GDLs, MPLs, CLs | |
Energy | All zones. |
Source Terms | Expressions |
---|---|
Mass | |
Momentum | |
Species | ; |
Electronic potential | |
Ionic potential | |
Liquid water | ; |
Dissolved water | |
Energy | ; ; ; |
Description | Value |
---|---|
Porosity | εCLs/MPLs/GDLs: 0.4/0.4/0.78 |
Permeability | KCLs/MPLs/GDLs: 1 × 10−13/7 × 10−13/2 × 10−12 m2 |
Contact angle | θCLs/MPLs: 120°/150° |
Electronic conductivity, | κele CLs/MPLs/GDLs/BPs: 1000/5000/17500/20000 S m−1 |
Equivalent weight of membrane | EW: 1.0 kg mol−1 |
Density of membrane | ρEW: 1980 kg m−3 |
Heat conductivity | ks MEM/CLs/MPLs/GDLs/BPs: 0.95/1/0.83/1/20 W m−2 K−1 |
Heat capacity | cp MEM/CLs/MPLs/GDLs/BPs: 833/3300/800/568/1580 J kg−1 K−1 |
Oxygen diffusivity and hydrogen diffusivity | DO2/DH2: 3.732 × 10−5/5.717 × 10−5 m2 s−1 |
Water diffusivity | DH2O: 5.717 × 10−5 m2 s−1 |
Surface tension | σ: 0.0625 N m−1 |
Vapor condensation latent heat | hcon: 2.308 × 106 J kg−1 |
Hydronium latent heat | hhy: 3.462 × 106 J kg−1 |
Entropy change of reaction | ΔS: −149.142 J mol−1 K−1 |
Dimensionless phase transfer rates | Shcon/evap: 2.04 × 10−3 |
Specific pore surface area | Apore: 2.0 × 105 m−1 |
Characteristic length | d: 5.0 × 10−6 m |
Phase change rate coefficient | γld: 1.0 s−1 |
Volume fraction of ionomer in CL | ω: 0.22 |
Anode exchange current density | A m−3 |
Cathode exchange current density | A m−3 |
Reference H2/O2 concentration | : 56.4/3.39 mol m−3 |
Transfer coefficient | αc/αa: 0.5/0.5 |
Proton conductivity |
Description | Value | |
---|---|---|
GC | Width, WcGC | 1 mm |
Depth, dcGC | 1 mm | |
CC | Width, WcCC | 1 mm |
Depth, dcCC | 1 mm | |
thickness | BPs, δaBP/δcBP | 0.05/0.05 mm |
GDLs, δaGDL/δcGDL | 0.5/0.25 mm | |
MPLs, δaMPL/δcMPL | 0.03/0.03 mm | |
CLs, δaCL/δcCL | 0.03/0.03 mm | |
Membrane, δMEM | 0.025 mm | |
cell length | L | 10 mm |
Anode side | Inlet temperature, Ta, in | 298.15 K |
Inlet relative humidity | 0 | |
Cathode side | Inlet temperature, Tc, in | 298.15 K |
Inlet relative humidity | 0.3 | |
Operating pressure | 1 atm |
Categories | Case No. | PTFE Doping Content (wt%) |
---|---|---|
Uniform scheme | 1 | 40% |
2 | 30% | |
3 | 20% | |
4 | 10% | |
Through-plane Gradient scheme | 5 | 10% to 40% from GC/GDL interface to GDL/MPL interface |
6 | 40% to 10% from GC/GDL interface to GDL/MPL interface | |
In-plane Sandwich scheme | 7 | 40% under GC and 10% under CC |
8 | 10% under GC and 40% under CC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Dong, E.; Chen, L.; Wang, Y.; Tao, W.-Q. Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell. Energies 2022, 15, 6262. https://doi.org/10.3390/en15176262
Peng M, Dong E, Chen L, Wang Y, Tao W-Q. Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell. Energies. 2022; 15(17):6262. https://doi.org/10.3390/en15176262
Chicago/Turabian StylePeng, Ming, Enci Dong, Li Chen, Yu Wang, and Wen-Quan Tao. 2022. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell" Energies 15, no. 17: 6262. https://doi.org/10.3390/en15176262
APA StylePeng, M., Dong, E., Chen, L., Wang, Y., & Tao, W. -Q. (2022). Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell. Energies, 15(17), 6262. https://doi.org/10.3390/en15176262