Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Feedstocks and Their Characterisation
2.2. Pyrolysis Behaviour of Feedstock Samples
2.3. Kinetic Analysis Using CR Model
2.4. Thermodynamic Properties
2.5. Pyrolysis Gas Analysis
3. Results and Discussion
3.1. Feedstocks Characterisation
3.2. Pyrolysis Behaviour of Feedstock Samples
3.3. Kinetics Analysis: CR Model
3.4. Thermodynamic Properties
3.5. Pyrogas Analysis Findings
3.5.1. TGA–MS Profiles
3.5.2. Pyrolysis Stages
3.5.3. Effect of Blending on the Pyrogas Components Yield
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniek, A.; Jerzak, W.; Sieradzka, M.; Mika, Ł.; Sztekler, K.; Magdziarz, A. Intermediate pyrolysis of brewer’s spent grain: Impact of gas atmosphere. Energies 2022, 15, 2491. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Narayanan, K.S.; Ceylan, S.; Pambudi, N.A. Optimization of parameters for the generation of hydrogen in combined slow pyrolysis and steam gasification of biomass. Energy Fuels 2017, 31, 13692–13704. [Google Scholar] [CrossRef]
- Alherbawi, M.; Parthasarathy, P.; Al-Ansari, T.; Mackey, H.; McKay, G. Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study. Energy 2021, 232, 121027. [Google Scholar] [CrossRef]
- Al-Ansari, T.; AlNouss, A.; Al-Thani, N.; Parthasarathy, P.; ElKhalifa, S.; Mckay, G.; Alherbawi, M. Optimising multi biomass feedstock utilisation considering a multi technology approach. Comput. Aided Chem. Eng. 2020, 48, 1633–1638. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Pundlik, L.K.; Sheeba, K.N. Experimental studies on biomass pyrolysis using microwave radiation. Energy Sources Part A Recover. Util. Environ. Eff. 2015, 37, 2675–2683. [Google Scholar] [CrossRef]
- Sieradzka, M.; Kirczuk, C.; Kalemba-rec, I.; Mlonka-mędrala, A.; Magdziarz, A. Pyrolysis of biomass wastes into carbon materials. Energies 2022, 15, 1941. [Google Scholar] [CrossRef]
- Shahbaz, M.; Al-Ansari, T.; Inayat, M.; Sulaiman, S.A.; Parthasarathy, P.; McKay, G. A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus. Renew. Sustain. Energy Rev. 2020, 134, 110382. [Google Scholar] [CrossRef]
- Shahbaz, M.; AlNouss, A.; Parthasarathy, P.; Abdelaal, A.H.; Mackey, H.; McKay, G.; Al-Ansari, T. Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Convers. Biorefin. 2020, 12, 669–681. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Elhassan, O.; Parthasarathy, P.; Mackey, H.; Al-Ansari, T.; McKay, G. Thermogravimetric analysis of individual food waste items and their blends for biochar production. Comput. Aided Chem. Eng. 2020, 48, 1543–1548. [Google Scholar] [CrossRef]
- Pradhan, S.; Shahbaz, M.; Abdelaal, A.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Optimization of process and properties of biochar from cabbage waste by response surface methodology. Biomass Convers. Biorefin. 2020, 1–13. [Google Scholar] [CrossRef]
- Khorram, M.; Lin, D.; Zhang, Q.; Zheng, Y.; Fang, H.; Yu, Y. Effects of aging process on adsorption-desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. J. Environ. Sci. 2017, 56, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Mia, S.; Uddin, M.; Kader, M.; Ahsan, A.; Mannan, M.; Hossain, M.; Solaiman, Z. Pyrolysis and co-composting of municipal organic waste in Bangladesh: A quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits. Waste Manag. 2018, 75, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Lu, Z.; Yao, S.; Li, Y.; Liu, Z.; Lang, B.; Chen, Z. Effects of thermal conditions on char yield and char reactivity of woody biomass in stepwise pyrolysis. J. Anal. Appl. Pyrolysis 2019, 138, 211–217. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Fernandez, A.; Al-Ansari, T.; Mackey, H.R.; Rodriguez, R.; McKay, G. Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. J. Environ. Manag. 2021, 287, 112345. [Google Scholar] [CrossRef] [PubMed]
- Al-Rumaihi, A.; Parthasarathy, P.; Fernandez, A.; Al-Ansari, T.; Mackey, H.R.; Rodriguez, R.; Mazza, G.; McKay, G. Thermal degradation characteristics and kinetic study of camel manure pyrolysis. J. Environ. Chem. Eng. 2021, 9, 106071. [Google Scholar] [CrossRef]
- FAO. Fruit and Vegetables—Your Dietary Essentials. The International Year of Fruits and Vegetables, 2021. Available online: https://www.fao.org/documents/card/en/c/cb2395en (accessed on 21 November 2021).
- Giudicianni, P.; Bozza, P.; Sorrentino, G.; Ragucci, R. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste. Waste Manag. 2015, 44, 125–134. [Google Scholar] [CrossRef]
- Poblete, R.; Painemal, O. Recovering water from brine: Assessments of feasibility and applicability to irrigation processes. Desalination 2018, 439, 17–24. [Google Scholar] [CrossRef]
- Liang, S.; Han, Y.; Wei, L.; Mcdonald, A.G. Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. Biomass Convers. Biorefin. 2015, 5, 237–246. [Google Scholar] [CrossRef]
- Kumar, B.G.P.; Francis, R.R.; Raouf, A.; Subramanian, R.; Gupta, S.; Kannan, G.; Thirumavalavan, K. Torrefied materials derived from waste vegetable biomass. Mater. Today Proc. 2020, 28, 852–855. [Google Scholar] [CrossRef]
- Chen, S.; Meng, A.; Long, Y.; Zhou, H.; Li, Q.; Zhang, Y. TGA pyrolysis and gasification of combustible municipal solid waste. J. Energy Inst. 2015, 88, 332–343. [Google Scholar] [CrossRef]
- Mary, G.S.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef]
- Reddy, J.P.; Rhim, J. Extraction and Characterization of Cellulose Microfibers from Agricultural Wastes of Onion and Garlic Extraction and Characterization of Cellulose Microfibers from. J. Nat. Fibers 2018, 129, 1–9. [Google Scholar] [CrossRef]
- Maia, A.A.D.; de Morais, L.C. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 2016, 204, 157–163. [Google Scholar] [CrossRef]
- Müsellim, E.; Tahir, M.H.; Ahmad, M.S.; Ceylan, S. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl. Therm. Eng. 2018, 137, 54–61. [Google Scholar] [CrossRef]
- Sriram, A.; Swaminathan, G. Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies. Bioresour. Technol. 2018, 265, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Thompson, V.S.; Aston, J.E.; Lacey, J.A.; Thompson, D.N. Optimizing Biomass Feedstock Blends with Respect to Cost, Supply, and Quality for Catalyzed and Uncatalyzed Fast Pyrolysis Applications. Bioenergy Res. 2017, 10, 811–823. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Aboagarib, E.A.A.; Zhou, C.; Ma, H. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar—A review. Bioresour. Technol. 2020, 297, 122408. [Google Scholar] [CrossRef] [PubMed]
- Sait, H.H.; Hussain, A.; Bassyouni, M.; Ali, I.; Kanthasamy, R.; Ayodele, B.V.; Elhenawy, Y. Hydrogen-rich syngas and biochar production by non-catalytic valorization of date palm seeds. Energies 2022, 15, 2727. [Google Scholar] [CrossRef]
- Rashid, M.I. Mineral Carbonation of CO2 Using Alternative Feedstocks; The University of Newcastle: Newcastle, Australia, 2019. [Google Scholar]
- Eke, J.; Onwudili, J.A.; Bridgwater, A.V. Influence of moisture contents on the fast pyrolysis of trommel fines in a bubbling fluidized bed reactor. Waste Biomass Valorization 2020, 11, 3711–3722. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1061–1063. [Google Scholar] [CrossRef]
- Alhumade, H.; da Silva, J.C.G.; Ahmad, M.S.; Çakman, G.; Yıldız, A.; Ceylan, S.; Elkamel, A. Investigation of pyrolysis kinetics and thermal behavior of Invasive Reed Canary (Phalaris arundinacea) for bioenergy potential. J. Anal. Appl. Pyrolysis 2019, 140, 385–392. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; Elhassan, O.; Mansour, S.; McKay, G. Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Convers. Biorefin. 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Manić, N.; Janković, B.; Stojiljković, D.; Angelopoulos, P.; Radojević, M. Thermal characteristics and combustion reactivity of coronavirus face masks using TG-DTG-MS analysis. J. Therm. Anal. Calorim. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Radojević, M.; Janković, B.; Stojiljković, D.; Jovanović, V.; Čeković, I.; Manić, N. Improved TGA-MS measurements for evolved gas analysis (EGA) during pyrolysis process of various biomass feedstocks. Syngas energy balance determination. Thermochim. Acta 2021, 699, 178912. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Alherbawi, M.; Pradhan, S.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Pyrolysis characteristics, kinetic, and thermodynamic analysis of camel dung, date stone, and their blend using thermogravimetric analysis. Biomass Convers. Biorefin. 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Cui, B.; Chen, Z.; Guo, D.; Liu, Y. Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms. Bioresour. Technol. 2022, 349, 126328. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, L.; Márquez-Montesinos, F.; Gonzalo, A.; Sánchez, J.L.; Arauzo, J. Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. J. Anal. Appl. Pyrolysis 2008, 83, 124–130. [Google Scholar] [CrossRef]
- Özveren, U.; Özdoǧan, Z.S. Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry. Biomass Bioenergy 2013, 58, 168–179. [Google Scholar] [CrossRef]
- Vamvuka, D.; Kakaras, E.; Kastanaki, E.; Grammelis, P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 2003, 82, 1949–1960. [Google Scholar] [CrossRef]
- Gupta, N.K.; Prakash, P.; Kalaichelvi, P.; Sheeba, K.N. The effect of temperature and hemicellulose-lignin, cellulose-lignin, and cellulose-hemicellulose on char yield from the slow pyrolysis of rice husk. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 1428–1434. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Szymá Nska-Chargot, M.; Chylí, M.; Gdula, K.; Kozioł, A.; Zdunek, A. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers 2017, 9, 495. [Google Scholar] [CrossRef]
- Jeguirim, M.; Bikai, J.; Elmay, Y.; Limousy, L.; Njeugna, E. Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy Sustain. Dev. 2014, 23, 188–193. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, S.; Fu, H.; Gao, W.; Wang, B.; Zeng, J.; Xu, J. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell. Bioresour. Technol. 2019, 282, 228–235. [Google Scholar] [CrossRef]
- Guo, J.; Lua, A.C. Kinetic study on pyrolytic process of oil-palm solid waste using two-step consecutive reaction model. Biomass Bioenergy 2001, 20, 223–233. [Google Scholar] [CrossRef]
- Kumar, M.; Srivastava, N.; Upadhyay, S.N.; Mishra, P.K. Thermal degradation of dry kitchen waste: Kinetics and pyrolysis products. Biomass Convers. Biorefin. 2021, 1–18. [Google Scholar] [CrossRef]
- Ma, M.; Bai, Y.; Song, X.; Wang, J.; Su, W.; Yao, M.; Yu, G. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG–MS. Sci. Total Environ. 2020, 728, 138828. [Google Scholar] [CrossRef]
- Meng, A.; Zhou, H.; Qin, L.; Zhang, Y.; Li, Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis 2013, 104, 28–37. [Google Scholar] [CrossRef]
- Özsin, G.; Pütün, A.E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manag. 2017, 64, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Manić, N.G.; Janković, B.Ž.; Stojiljković, D.D.; Jovanović, V.V.; Radojević, M.B. TGA-DSC-MS analysis of pyrolysis process of various agricultural residues. Therm. Sci. 2019, 23, S1457–S1472. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresour. Technol. 2014, 169, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shi, S.; Zhang, J.; Chen, M.; Zhou, X. Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization. Energy Convers. Manag. 2016, 112, 41–48. [Google Scholar] [CrossRef]
Denotations | Various CR Model Mechanisms | Equation | |
---|---|---|---|
P2 | 2-Power law | (4) | |
P3 | 3-Power law | (5) | |
P4 | 4-Power law | (6) | |
P2/3 | 2/3-Power law | (7) | |
F1 | I-order reaction | (8) | |
F2 | II-order reaction | (9) | |
F3 | III-order reaction | (10) | |
R2 | Contracting Area | (11) | |
R3 | Contracting Volume | (12) | |
D1 | 1D diffusional | (13) | |
D2 | 2D diffusional | (14) | |
D3 | 3D diffusional | (15) | |
D4 | Ginstling–Brounstein diffusional | (16) | |
A2 | Avrami–Erofeev | (17) | |
A3 | Avrami–Erofeev | (18) | |
A4 | Avrami–Erofeev | (19) |
Vegetable Waste | Components * (%) | |||
---|---|---|---|---|
Moisture | Volatile Content | Fixed Carbon d | Ash | |
Tomato | 10.00 | 72.00 | 13.60 | 4.41 |
Cucumber | 8.14 | 64.04 | 25.95 | 1.87 |
Carrot | 6.59 | 79.87 | 8.33 | 5.22 |
Vegetable Waste | Components * (%) | ||||
---|---|---|---|---|---|
Carbon | Hydrogen | Nitrogen | Oxygen d | Sulphur | |
Tomato | 49.68 | 7.35 | 3.72 | 39.25 | 0.00 |
Cucumber | 56.69 | 6.52 | 3.91 | 32.88 | 0.00 |
Carrot | 41.54 | 5.39 | 1.37 | 51.7 | 0.00 |
Vegetable Waste | GCV (MJ/kg) | NCV (MJ/kg) |
---|---|---|
Tomato | 19.13 | 17.64 |
Cucumber | 21.58 | 20.21 |
Carrot | 13.36 | 12.21 |
Vegetable | Mechanisms | A (s−1) | E (kJ mol−1) | R2 |
---|---|---|---|---|
Tomato | F1 | 2.06 | 39.09 | 0.90 |
D2 | 1.19 × 102 | 68.59 | 0.81 | |
D3 | 2.59 × 102 | 77.53 | 0.87 | |
D4 | 5.45 × 101 | 71.40 | 0.83 | |
Cucumber | F1 | 2.95 | 40.25 | 0.90 |
D2 | 2.57 × 102 | 71.41 | 0.82 | |
D3 | 5.34 × 102 | 80.08 | 0.87 | |
D4 | 1.16 × 102 | 74.15 | 0.84 | |
Carrot | F1 | 1.92 | 38.57 | 0.90 |
D2 | 1.18 × 102 | 68.11 | 0.81 | |
D3 | 2.44 × 102 | 76.80 | 0.87 | |
D4 | 5.34 × 101 | 70.86 | 0.83 | |
Ternary blend | F1 | 3.03 × 10−1 | 28.97 | 0.90 |
D2 | 3.79 | 49.43 | 0.80 | |
D3 | 7.95 | 57.78 | 0.87 | |
D4 | 1.71 | 52.05 | 0.83 |
Vegetable Waste | Mechanisms | ΔH (kJ mol−1) | ΔG (kJ mol−1) | ΔS (kJ mol−1 K−1) |
---|---|---|---|---|
Tomato | F1 | 34.11 | 185.85 | −0.2530 |
D2 | 63.60 | 195.13 | −0.2193 | |
D3 | 72.54 | 200.19 | −0.2128 | |
D4 | 66.42 | 201.84 | −0.2258 | |
Cucumber | F1 | 35.26 | 185.23 | −0.2500 |
D2 | 66.42 | 194.11 | −0.2129 | |
D3 | 75.09 | 199.14 | −0.2068 | |
D4 | 69.16 | 200.81 | −0.2195 | |
Carrot | F1 | 33.57 | 186.22 | −0.2536 |
D2 | 63.11 | 195.16 | −0.2194 | |
D3 | 71.80 | 200.21 | −0.2133 | |
D4 | 65.85 | 201.88 | −0.2260 | |
Ternary blend | F1 | 24.00 | 162.16 | −0.2310 |
D2 | 44.45 | 192.73 | −0.2479 | |
D3 | 52.81 | 197.40 | −0.2418 | |
D4 | 47.08 | 199.30 | −0.2545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkhalifa, S.; Mariyam, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G.; Parthasarathy, P. Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses. Energies 2022, 15, 6277. https://doi.org/10.3390/en15176277
Elkhalifa S, Mariyam S, Mackey HR, Al-Ansari T, McKay G, Parthasarathy P. Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses. Energies. 2022; 15(17):6277. https://doi.org/10.3390/en15176277
Chicago/Turabian StyleElkhalifa, Samar, Sabah Mariyam, Hamish R. Mackey, Tareq Al-Ansari, Gordon McKay, and Prakash Parthasarathy. 2022. "Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses" Energies 15, no. 17: 6277. https://doi.org/10.3390/en15176277
APA StyleElkhalifa, S., Mariyam, S., Mackey, H. R., Al-Ansari, T., McKay, G., & Parthasarathy, P. (2022). Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses. Energies, 15(17), 6277. https://doi.org/10.3390/en15176277