Comparison and Parametric Analysis of Thermoelectric Generator System for Industrial Waste Heat Recovery with Three Types of Heat Sinks: Numerical Study
Abstract
:1. Introduction
2. System Description
3. Numerical Model
3.1. Boundary Conditions
3.2. Fluid Model
3.3. Thermoelectric Model
3.4. Numerical Methods
4. Validation of Computational Model
5. Results and Discussion
5.1. Fluid Analysis
5.2. Thermal Analysis
5.3. Electrical Analysis
6. Conclusions
- −
- The 3D multiphysics computational model was developed by simplifying the entire system into one module-based system. The results from the numerical simulations were in good agreement with the results from the reference studies and the measured data.
- −
- In most instances, the CPF heat sink presented a much lower pressure drop and pumping power than the PF and RPF heat sinks.
- −
- When the inlet velocity of the flue gas was lower, the PF heat sink showed a better heat transfer performance, whereas the CPF heat sink presented the best heat transfer when the flue gas was at a higher inlet velocity. This correlation also applied to the maximum power output and TEG efficiency.
- −
- The system pressure drop led to auxiliary pumping power. The maximum net power output and efficiency of the TEG system tended to decrease after the inlet velocity of the flue gas exceeded 5 m/s for the PF and RPF heat sinks. In comparison, this trend was unremarkable for the CPF heat sink.
- −
- When the inlet velocity of the flue gas was lower than 4–5 m/s, the PF heat sink helped to increase the system power output and efficiency. In contrast, when the inlet velocity of the flue gas was higher than 5 m/s, CPF heat sink was the best option.
- −
- For the existing TEG-based heat recovery systems, the results from the numerical analysis provide an important reference for the selection of heat sinks, thereby improving their performance.
- −
- However, more experimental tests must be conducted without industrial constraints. Numerical simulations for more types of heat sinks under different working conditions, such as varying inlet flue gas temperatures, also need to be conducted in future studies. Additionally, an optimization analysis could be developed based on the results from further numerical studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Area (mm2) | Greek symbols | |
a | Gas absorption coefficient (m−1) | α | Seebeck coefficient, (μV/K) |
cp | Specific heat (W/kg⸱k) | β | Thomson coefficient, (μV/K) |
Gv | Production of turbulent viscosity | η | TEG conversion efficiency, (%) |
H | Fin height (mm) | v | Fluid velocity, (m/s) |
I | Electrical current (A) | ρ | Density, (kg/m3) |
J | Current density (A/m2) | µ | Dynamic viscosity, (kg/m s) |
k | Thermal conductivity (W/mk) | ||
N | Fin number | Subscripts | |
Pmax | Maximum power output, (W) | b | Fin base |
Pnet,max | Net maximum power output, (W) | c | Cold side of the TEG module |
p | Pressure, (Pa) | ei | Electrical insulator |
Qh | Heat flux to hot side of the TEG, (W) | ec | Electrodes |
R, r | Electrical resistivity of the electrodes, (Ωm) | f | Fin |
t | Thickness (mm) | hs | Heat sink |
T | Temperature, (°C) | L | External load |
Th | Hot side temperature of the TEG module (°C) | mpp | Maximum power point |
Tc | Cold side temperature of the TEG module (°C) | n | n-type of semiconductor |
U0 | Open voltage of the TEG module (V) | oc | Open circuit |
V | Flue gas velocity (m/s) | p | p-type of semiconductor |
Yv | Destruction of the turbulent viscosity | TEG | Thermoelectric generator |
References
- Khalil, H.; Hassan, H. Enhancement of waste heat recovery from vertical chimney via thermoelectric generators by heat spreader. Process. Saf. Environ. Prot. 2020, 140, 314–329. [Google Scholar] [CrossRef]
- Kuroki, T.; Murai, R.; Makion, K.; Nagano, K.; Kajihara, T.; Kaibe, H.; Hachuma, H.; Matsuno, H. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process. J. Electron. Mater. 2015, 44–46, 2151–2156. [Google Scholar] [CrossRef]
- Formann, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Lv, S.; He, W.; Jiang, Q.; Hu, Z.; Liu., X.; Chen, H.; Liu, M. Study of different heat exchange technologies influence on the performance of thermoelectric generators. Energy Convers. Manag. 2018, 156, 167–177. [Google Scholar] [CrossRef]
- Zaher, M.H.; Abdelsalam, M.Y.; Cotton, J.S. Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications. Appl. Energy 2020, 261, 114434. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W. Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system. J. Power Sources 2019, 439, 227069. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W.; Zhou, W. A novel optimization method for thermoelectric module used in waste heat recovery. Energy Convers. Manag. 2020, 209, 112645. [Google Scholar] [CrossRef]
- Pacheco, N.; Brito, F.P.; Vieira, R.; Martins, J.; Barbosa, H.; Goncalves, L.M. Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy 2020, 197, 117154. [Google Scholar] [CrossRef]
- Bai, W.; Yuan, X.; Liu, X. Numerical investigation on the performances of automotive thermoelectric generator employing metal foam. Appl. Therm. Eng. 2017, 124, 178–184. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.D.; Li, Z.; Su, C.Q. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Convers. Manag. 2015, 90, 121–127. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Ge, M.; Liang, Z.; Liang, Y.; Li, Y. Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery. Appl. Energy 2019, 239, 425–433. [Google Scholar] [CrossRef]
- Jang, J.Y.; Tsai, Y.C.; Wu, C.W. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Energy 2013, 53, 270–281. [Google Scholar] [CrossRef]
- Børset, M.T.; Wilhelmsen, Ø.; Kjelstrup, S.; Burheim, O.S. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy 2017, 118, 865–875. [Google Scholar] [CrossRef]
- Yadav, S.; Liu, J.; Kong, M.S.; Yoon, Y.G.; Kim, S.C. Heat Transfer Characteristics of Thermoelectric Generator System for Waste Heat Recovery from a Billet Casting Process: Experimental and Numerical Analysis. Energies 2021, 14, 601. [Google Scholar] [CrossRef]
- Tian, Z.; Lee, S.Y.; Chen, G. A Comprehensive Review of Heat Transfer in Thermoelectric Materials and Devices. Annu. Rev. Heat Transf. 2014, 17, 425–483. [Google Scholar] [CrossRef]
- Bittner, M.; Kanas, N.; Hinterding, R.; Steinbach, F.; Räthel, J.; Schrade, M.; Wiik, K.; Einarsrud, M.A.; Feldhoff, A. A comprehensive study on improved power materials for high-temperature thermoelectric generators. J. Power Sources 2019, 410–411, 143–151. [Google Scholar] [CrossRef]
- Ouyang, Z.; Li, D. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contacted resistance. Sci. Rep. 2016, 6, 24123. [Google Scholar] [CrossRef]
- Dhass, A.D.; Krishna, R.; Sreenivasan, M. Numerical analysis of a variety of thermoelectric generator materials. Mater. Today Proc. 2020, 33–41, 29–34. [Google Scholar] [CrossRef]
- Luo, D.; Wang., R.; Yu, W.; Zhou, W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Appl. Energy 2020, 270, 115181. [Google Scholar] [CrossRef]
- Yan, S.R.; Moria, H.; Asaadi, S.; Dizaji, H.S.; Khalilarya, S.; Jermsittiparsert, K. Performance and profit analysis of thermoelectric power generators mounted on channels with different cross-sectional shapes. Appl. Therm. Eng. 2020, 176, 115455. [Google Scholar] [CrossRef]
- Borcuch, M.; Musiał, M.; Gumuła, S.; Sztekler, K.; Wojciechowski, K. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Appl. Therm. Eng. 2017, 127, 1355–1363. [Google Scholar] [CrossRef]
- Elghool, A.; Basrawi, F.; Ibrahim, T.K.; Habib, K.; Ibrahim, H.; Idris, D.M.N.D. A review on heat sink for thermo-electric power generation-Classifications and parameters affecting performance. Energy Convers. Manag. 2017, 134, 260–277. [Google Scholar] [CrossRef]
- Wang, C.C.; Hung, C.I.; Chen, W.H. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy 2012, 39, 236–245. [Google Scholar] [CrossRef]
- Rezania, A.; Rosendahl, L.A. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application. Energy Convers. Manag. 2015, 101, 730–737. [Google Scholar] [CrossRef]
- Nayak, R.K.; Ray, S.; Sahoo, S.S.; Satapathy, P.K. Effect of angle of attack and wind direction on limiting input heat flux for solar assisted thermoelectric power generator with plate fin heat sink. Solar Energy 2019, 186, 175–190. [Google Scholar] [CrossRef]
- Zheng, L.J.; Kang, H.W. 27-A passive evaporative cooling heat sink method for enhancing low-grade waste heat recovery capacity of thermoelectric generators. Energy Convers. Manag. 2022, 251, 114931. [Google Scholar] [CrossRef]
- Demir, M.E.; Dincer, I. Development and heat transfer analysis of a new heat recovery system with thermoelectric generator. Int. J. Heat Mass Transf. 2017, 108, 2002–2010. [Google Scholar] [CrossRef]
- Nithyanandam, K.; Mahajan, R.L. Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery. Int. J. Heat Mass Transf. 2018, 122, 877–883. [Google Scholar] [CrossRef]
- Wong, K.C.; Indran, S. Impingement heat transfer of a plate fin heat sink with fillet profile. Int. J. Heat Mass Transf. 2013, 65, 1–9. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, S.J.; Bae, J.K. Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. Int. J. Heat Mass Transf. 2009, 52, 3510–3517. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, S.J. Averaging approach for microchannel heat sinks subject to the uniform wall temperature condition. Int. J. Heat Mass Transf. 2006, 49, 695–706. [Google Scholar] [CrossRef]
- Montecucco, A.; Siviter, J.; Knox, A.R. Constant heat characterisation and geometrical optimization of thermoelectric generators. Appl. Energy 2015, 149, 248–258. [Google Scholar] [CrossRef]
- Hussain, A.A.; Freegah, B.; Khalaf, B.S.; Towsyfyan, H. Numerical investigation of heat transfer enhancement in plate-fin heat sinks: Effect of flow direction and fillet profile. Case Stud. Therm. Eng. 2019, 13, 100388. [Google Scholar] [CrossRef]
- Park, K.W.; Park, K.O.; Lim, H.J. 35-Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization. Int. J. Air-Cond. Refrig. 2005, 13, 71–82. [Google Scholar]
Structures/Material | Parameters and Properties | Symbol | Values |
---|---|---|---|
Electrical Insulator/ Ceramic | Thickness, mm | tei | 1 |
Area, mm2 | Aei | 60 × 60 | |
Thermal conductivity, W/mk | kei | 25 | |
Electrodes/ Copper | Thickness, mm | tec | 0.3 |
Area, mm2 | Aec | 3.7 × 1.6 | |
Thermal conductivity, W/mk | kec | 387.6 | |
Seebeck coefficient, μV/K | αec | 14 | |
Electrical resistivity, Ωm | Rec | 1.7 × 10−8 | |
N-P semiconductor leg/ Bismuth telluride,Bi2Te3 | Thickness, mm | tpn | 0.8 |
Area, mm2 | Apn | 1.5 × 1.5 | |
Thermal conductivity, W/mk | kp, kn | Polynomial [28] | |
Seebeck coefficient, μV/K | αp, αn | Polynomial [28] | |
Electrical resistivity, Ωm | rp, rn | Polynomial [28] |
PF | CPF | RPF | |||||||
---|---|---|---|---|---|---|---|---|---|
Fin Height (m) | Plate Number | Fin Thickness (m) | Fin Area (m2) | Pin Number | Pin Diameter (m) | Fin Area (m2) | Pin Number | Pin Side (m) | Fin Area (m2) |
0.0206 | 18 | 0.001 | 0.0526 | 18 × 18 | 0.0025 | 0.0524 | 18 × 18 | 0.00195 | 0.0521 |
0.0286 | 0.0731 | 0.0727 | 0.0723 | ||||||
0.0366 | 0.0935 | 0.0931 | 0.0925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Shin, K.-Y.; Kim, S.C. Comparison and Parametric Analysis of Thermoelectric Generator System for Industrial Waste Heat Recovery with Three Types of Heat Sinks: Numerical Study. Energies 2022, 15, 6320. https://doi.org/10.3390/en15176320
Liu J, Shin K-Y, Kim SC. Comparison and Parametric Analysis of Thermoelectric Generator System for Industrial Waste Heat Recovery with Three Types of Heat Sinks: Numerical Study. Energies. 2022; 15(17):6320. https://doi.org/10.3390/en15176320
Chicago/Turabian StyleLiu, Jie, Ki-Yeol Shin, and Sung Chul Kim. 2022. "Comparison and Parametric Analysis of Thermoelectric Generator System for Industrial Waste Heat Recovery with Three Types of Heat Sinks: Numerical Study" Energies 15, no. 17: 6320. https://doi.org/10.3390/en15176320
APA StyleLiu, J., Shin, K.-Y., & Kim, S. C. (2022). Comparison and Parametric Analysis of Thermoelectric Generator System for Industrial Waste Heat Recovery with Three Types of Heat Sinks: Numerical Study. Energies, 15(17), 6320. https://doi.org/10.3390/en15176320