Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan
Abstract
:1. Introduction
Environmental Potential in Light of Agricultural Production in the Kyrgyz Republic
2. Materials and Methods
- Defining the strategic goal.
- Selection of experimental factors.
- Selection of the experiment plant (beans are important as a protein source and generate a high level of GHGs).
- Selection of the experiment site (geographical system boundary), i.e., the most important bean-growing region in Central Asia.
- Selection of agrotechnical treatments (based on the technical and infrastructural capabilities of farms located in the area of research).
- Selection of experimental factor levels (wool additives at 0.5, 1, and 2).
- Selection of the system boundary (based on the literature study and risk analysis in the context of the adopted goal, in accordance with ISO 31000: 2018).
- Production of fertilizers used.
- Energy consumption for field-based work on the farm.
- Soil emissions (direct and indirect) from the use of fertilizer and wool.
- Emissions from the management of crop residues and from the mineralization of organic matter in the soil.
- Emissions related to the preparation of wool, its application to the soil, and its decomposition.
- Emissions related to the production of seed material and plant protection products.
3. Results and Discussion
- Vj—coefficient of variation,
- sj—standard deviation of the j-th variable, and
- —mean of the j-th variable.
3.1. Normalization of the Diagnostic Variables
- zij—the normalized value of the variable xj for i-th object,
- xij—the output value of the j-th variable,
- n—the number of observations,
- m—the number of variables, and
- A, B, and p—parameters that can have different values, depending on the method of normalization.
- i—the object number,
- j—the number of the diagnostic feature,
- Sj—the standard deviation of the feature j,
- xij—realization of the feature j in the object i.
3.2. Synthetic Index as a Criterion of Linear Ordering
- di(1) = d(ηi i η(1))—the distance between the disaggregated level of development of the i-th object ηi and the disaggregated pattern of the level of development, η(1),
- d(0),(1) = d(η(0) η(1))—the distance between the disaggregated zero development level η(0) and disaggregated model development level η(1),
- αj—the weighting factor of the feature xj.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gródek-Szostak, Z.; Suder, M.; Kusa, R.; Szeląg-Sikora, A.; Duda, J.; Niemiec, M. Renewable Energy Promotion Instruments Used by Innovation Brokers in a Technology Transfer Network. Case Study of the Enterprise Europe Network. Energies 2020, 13, 5752. [Google Scholar] [CrossRef]
- Gródek-Szostak, Z.; Luc, M.; Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Ochoa Siguencia, L.; Velinov, E. Promotion of RES in a Technology Transfer Network. Case Study of the Enterprise Europe Network. Energies 2020, 13, 3445. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies 2020, 13, 2063. [Google Scholar] [CrossRef]
- Aguilera, E.; Reyes-Palomo, C.; Díaz-Gaona, C.; Sanz-Cobena, A.; Smith, P.; García-Laureano, R.; Rodríguez-Estévez, V. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Glob. Environ. Chang. 2021, 69, 102319. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Ng’etich, O.K.; Kiboi, M.N.; Okeyo, J.; Shisanya, C.A.; Okwuosa, E.A.; Mugendi, D.N.; Felix, K.; Ngetich, F.K. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholderrain-fed farms in Kenya. Sci. Afr. 2020, 8, e00458. [Google Scholar]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas. Energies 2020, 13, 1825. [Google Scholar] [CrossRef]
- Strelkovskii, N.; Komendantova, N.; Sizov, S.; Rovenskaya, E. Building plausible futures: Scenario-based strategic planning of industrial development of Kyrgyzstan. Futures 2020, 124, 102646. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kapusta-Duch, J.; Kuboń, M.; Komorowska, M.; Karcz, J. Impact of Integrated and Conventional Plant Production on Selected Soil Parameters in Carrot Production. Sustainability 2019, 11, 5612. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A. Evaluation of the chemical composition of raw common duckweed (Lemna minor L.) and pulp after methane fermentation. J. Elem. 2018, 23, 685–695. [Google Scholar] [CrossRef]
- Harwatt, H.; Sabaté, J.; Eshel, G.; Soret, S.; Ripple, W. Substituting beans for beef as a contribution toward US climate change targets. Clim. Chang. 2017, 143, 261–270. [Google Scholar] [CrossRef]
- Schillhorn van Veen, T.W. The Kyrgyz Sheep Herders at a Crossroads; Pastoral Development Network Series Paper 38d; Overseas Development Institute: London, UK, 1995; Available online: http://www.odi.org.uk/pdn/papers/index1.htm (accessed on 17 May 2022).
- Sharrock, P.; Fiallo, M.; Nzihou, A.; Chkir, M. Hazardous animal waste carcasses transformation into slow release fertilizers. J. Hazard. Mater. 2009, 167, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Hens, L.; Vandecasteele, C. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. Case Colomb. J. Clean. Prod. 2020, 269, 122317. [Google Scholar] [CrossRef]
- Islam, K.N.; Sarker, T.; Taghizadeh-Hesary, F.; Atri, A.C.; Alam, M.S. Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh. Renew. Sustain. Energy Rev. 2021, 139, 110695. [Google Scholar] [CrossRef]
- Alhazmi, H.; Minh Loy, A.C. Bioresource Technology Reports A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends. Bioresour. Technol. Rep. 2021, 14, 100682. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Suder, M.; Kuboń, M.; Borkowski, T.; Malik, G. Solar Power: Stellar Profit or Astronomic Cost? A Case Study of Photovoltaic Installations under Poland’s National Prosumer Policy in 2016–2020. Energies 2021, 14, 4233. [Google Scholar] [CrossRef]
- Karatayev, M.; Lisiakiewicz, R.; Gródek-Szostak, Z.; Kotulewicz-Wisińska, K.; Marhaba, N. The promotion of renewable energy technologies in the former Soviet bloc: Why, how, and with what prospects? Energy Rep. 2021, 7, 6983–6994. [Google Scholar] [CrossRef]
- Tilekeyev, K.; Mogilevskii, R.; Abdrazakova, N.; Shoola Dzhumaeva, S. Production and Exports of Kidney Beans in the Kyrgyz Republic: Value Chain Analysis; University of Central Asia–Institute of Public Policy and Administration (IPPA) Working Paper No. 43; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- International Reference Life Cycle Data System (ILCD). Handbook—General guide for Life CycleAssessment—Provisions and Action Steps; EUR 24378 EN; Publications Office of the European Union: Luxembourg, 2010; JRC58190.
- Kool, A.; Marinussen, M.; Blonk, H. LCI Data for the Calculation Tool Feed Print for Greenhouse Gas Emissions of Feed Production and Utilization: GHG Emissions of N, P, and K Fertilizer Production. Research Station ART. 2012. Available online: https://blonksustainability.nl/ (accessed on 10 May 2022).
- Nemecek, I.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems Data v3.0 (2012) Research Station ART; Agroscope Reckenholz-Tänikon: Zurich, Switzerland, 2012. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Volume 4: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Novoa, R.S.A.; Tejeda, H.R. Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutr. Cycl. Agroecosyst. 2006, 75, 29–46. [Google Scholar]
- Lisowska, A.; Filipek-Mazur, B.; Komorowska, M.; Niemiec, M.; Bar-Michalczyk, D.; Kuboń, M.; Tabor, S.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; et al. Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. Materials 2022, 15, 3387. [Google Scholar] [CrossRef]
- Forster, P. Changes in Atmospheric Constituents and Radiative Forcing; UN, IPCC Fourth Assessment, Report 2007; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Wójcicki, Z. Methodology of examining energy consumption of agricultural production. Probl. Inżynierii Rol. 2015, 23, 17–29. [Google Scholar]
- EPA United States Environmental Protection Agency. Greenhouse Gas Inventory Guidance Direct Emissions from Mobile Combustion Sources; EPA United States Environmental Protection Agency: Washington, DC, USA, 2016; p. 27.
- Audsley, E.; Stacey, K.; Parsons, D.J.; Williams, A.G. Estimation of the Greenhousegas Emissions from Agricultural Pesticide Manufacture and Use; Cranfield University: Cranfield, UK, 2009. [Google Scholar]
- Torrez Irigoyen, R.M.; Giner, S.A. Drying–toasting of presoaked soybean in fluidised bed. Modeling, validation and simulation of operational variants for reducing energy consumption. J. Food Eng. 2016, 171, 78–86. [Google Scholar] [CrossRef]
- Wang, X.J.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Potential for biogas production from anaerobic co-digestion of dairy and chicken manure with corn stalks. Adv. Mat. Res. 2012, 347, 2484–2492. [Google Scholar] [CrossRef]
- FAO. Global Database of GHG Emissions Related to Feed Crops: Methodology; Version 1. Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2017. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Caro, D.; LoPresti, A.; Davis, S.J.; Bastianoni, S.; Caldeira, K. CH4 and N2O emissions embodied in international trade of meat. Environ. Res. Lett. 2014, 9, 114005. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/9/11/114005 (accessed on 17 May 2022). [CrossRef]
- Wiedemann, S.G.; Yan, M.J.; Henry, B.K.; Murphy, C.M. Resource use and greenhouse gas emissions from three wool production regions in Australia. J. Clean. Prod. 2016, 122, 121–132. [Google Scholar] [CrossRef]
- Cottle, D.J.; Cowie, A.L. Allocation of greenhouse gas production between wool and meat in the life cycle assessment of Australian sheep production. Int. J. Life Cycle Assess. 2016, 21, 820–830. [Google Scholar] [CrossRef]
- Bhatt, A.; Abbassi, B. Review of environmental performance of sheep farming using life cycle assessment. J. Clean. Prod. 2021, 293, 126192. [Google Scholar] [CrossRef]
- Huang, W.; Bruemmer, B.; Huntsinger, L. Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China. Ecol. Econ. 2016, 122, 1–11. [Google Scholar] [CrossRef]
- Alcock, D.J.; Harrison, M.T.; Rawnsley, R.P.; Eckard, R.J. Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises? Agric. Syst. 2015, 132, 25–34. [Google Scholar] [CrossRef]
- Sabia, E.; Gauly, M.; Napolitano, F.; Serrapica, F.; Cifuni, G.F.; Claps, S. Dairy sheep carbon footprint and ReCiPe end-point study. Small Rumin. Res. 2020, 185, 106085. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Li, S.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Huang, M.; Shang, Z. Instability of decoupling livestock greenhouse gas emissions from economic growth in livestock products in the Tibetan highland. J. Environ. Manag. 2021, 287, 112334. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Espinoza-Orias, N.; Croker, T.; Azapagic, A. Life cycle greenhouse gas emissions from integrated organic farming: A systems approach considering rotation cycle. Sustain. Prod. Consum. 2018, 13, 60–79. [Google Scholar] [CrossRef]
- Sikora, J.; Niemiec, M.; Tabak, M.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Kuboń, M.; Komorowska, M. Assessment of the efficiency of nitrogen slow-release fertilizers in integrated production of carrot depending on fertilization strategy. Sustainability 2020, 12, 1982. [Google Scholar] [CrossRef]
- Lazcano, C.; Gonzalez-Maldonado, N.; Yao, E.H.; Wong, C.T.F.; Merrilees, J.J.; Falcone, M.; Peterson, J.D.; Casassa, F.; Decock, C. Sheep grazing as a strategy to manage cover crops in Mediterranean vineyards: Short-term effects on soil C, N and greenhouse gas (N2O, CH4, CO2) emissions. Agric. Ecosyst. Environ. 2021, 327, 107825. [Google Scholar] [CrossRef]
- Rashidov, N.; Chowaniak, M.; Niemiec, M.; Mamurovich, G.S.; Gufronovich, M.J.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Komorowska, M. Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan. Energies 2021, 14, 6160. [Google Scholar] [CrossRef]
- MacLeod, M.; Moran, D.; Eory, V.; Rees, R.M.; Barnes, A.; Topp, C.F.E.; Ball, B.; Hoad, S.; Wall, E.; McVittie, A.; et al. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric. Syst. 2010, 103, 198–209. [Google Scholar] [CrossRef]
- Zach, J.; Korjeni, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Niemiec, M.; Sikora, J.; Chowaniak, M. Possibilities of Designating Swards of Grasses and Small-Seed Legumes from Selected Organic Farms in Poland for Feed. In Farm Machinery and Processes Management in Sustainable Agriculture; IX International Scientific Symposium; Springer: Lublin, Poland, 2017; pp. 365–370. [Google Scholar]
- Böhme, M.H.; Pinker, I.; Grueneberg, H.; Grueneberg, S.; Herfort, S. Sheep wool as fertiliser for vegetables and flowers in organic farming. Acta Hortic. 2012, 933, 195–202. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Stratton, G.W.; Pincock, J.; Butler, S.; Jeliazkova, E.A.; Nedkov, N.K.; Gerard, P.D. Wool-waste as organic nutrient source for container-grown plants. Waste Manag. 2009, 29, 2160–2164. [Google Scholar] [CrossRef]
- Górecki, R.S.; Górecki, M.T. Utilization of Waste Wool as Substrate Amendment in Pot Cultivation of Tomato, Sweet Pepper, and Eggplant. Pol. J. Environ. Stud. 2010, 19, 1083–1087. [Google Scholar]
- Bhange, K.; Chaturvedi, V.; Bhatt, R. Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour. Bioprocess. 2016, 3, 13. [Google Scholar] [CrossRef]
- Fernández-Luqueño, F.; Reyes-Varela, V.; Martínez-Suárez, C.; Reynoso-Keller, R.E.; Méndez-Bautista, J.; Ruiz-Romero, E.; López-Valdez, F.; Luna-Guido, M.L.; Dendooven, L. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 2009, 407, 4289–4296. [Google Scholar] [CrossRef]
- Lindberg, L.; Ermolaev, E.; Vinnerås, B.; Lalander, C. Process efficiency and greenhouse gas emissions in black soldier fly larvae composting of fruit and vegetable waste with and without pre-treatment. J. Clean. Prod. 2022, 338, 130552. [Google Scholar] [CrossRef]
- Šarauskis, E.; Romaneckas, K.; Jasinskas, A.; Kimbirauskienė, R.; Naujokienė, V. Improving energy efficiency and environmental mitigation through tillage management in faba bean production. Energy 2020, 209, 118453. [Google Scholar] [CrossRef]
- Kuboń, M.; Niemiec, M.; Klimek-Kopyra, A.; Gliniak, M.; Sikora, J.; Sadowska, U.; Latawiec, A.E.; Kobyłecki, R.; Zarzycki, R.; Kacprzak, A.; et al. Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy 2021, 11, 2224. [Google Scholar] [CrossRef]
- Kontopoulou, C.-K.; Bilalis, D.; Pappa, V.A.; Rees, R.M.; Savvas, D. Effects of organic farming practices and salinity on yield and greenhouse gas emissions from a common bean crop. Sci. Hortic. 2015, 183, 48–57. [Google Scholar] [CrossRef]
- Xia, L.; Xia, Y.; Li, B.; Wang, J.; Wang, S.; Zhou, W.; Yan, X. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agric. Ecosyst. Environ. 2016, 231, 24–33. [Google Scholar] [CrossRef]
- Pilecco, G.E.; Chantigny, M.H.; Weiler, D.A.; Aita, C.; Thivierge, M.-N.; Schmatz, R.; Chaves, B.; Giacomini, S.J. Greenhouse gas emissions and global warming potential from biofuel cropping systems fertilized with mineral and organic nitrogen sources. Sci. Total Environ. 2020, 729, 138767. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil Tillage Res. 2021, 214, 105167. [Google Scholar] [CrossRef]
- Mona, S.; Malyan, S.K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S.S. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere 2021, 275, 129856. [Google Scholar] [CrossRef]
- Lam, W.Y.; Sim, S.; Kulak, M.; van Zelm, R.; Schipper, R.A.; Huijbregts, M.A.J. Drivers of variability in greenhouse gas footprints of crop production. J. Clean. Prod. 2021, 315, 128121. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooqg, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Hakala, K.; Nikunen, H.-M.; Sinkko, T.; Niemeläinen, O. Yields and greenhouse gas emissions of cultivation of red clover-grass leys as assessed by LCA when fertilised with organic or mineral fertilisers. Biomass Bioenergy 2012, 46, 111–124. [Google Scholar] [CrossRef]
- Kukuła, K. Metoda Unitaryzacji Zerowanej; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2000. [Google Scholar]
- Niemiec, M.; Chowaniak, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Selected Properties of Soils for Long-Term Use in Organic Farming. Sustainability 2020, 12, 2509. [Google Scholar] [CrossRef]
- Strahl, D.; Walesiak, M. Normalizacja zmiennych w skali przedziałowej i ilorazowej w referencyjnym systemie granicznym. Przegląd Stat. 1997, 44, 69–77. [Google Scholar]
- Zeliaś, A. Some Notes on the Selection of Normalisation of Diagnostic Variables. Stat. Transit. 2002, 5, 787–802. [Google Scholar]
- Duda, J.; Kusa, R.; Pietruszko, S.; Smol, M.; Suder, M.; Teneta, J.; Wójtowicz, T.; Żdanowicz, T. Development of Roadmap for Photovoltaic Solar Technologies and Market in Poland. Energies 2022, 15, 174. [Google Scholar] [CrossRef]
- Velinov, E.; Petrenko, Y.; Vechkinzova, E.; Denisov, I.; Ochoa Siguencia, L.; Gródek-Szostak, Z. “Leaky Bucket” of Kazakhstan’s Power Grid: Losses and Inefficient Distribution of Electric Power. Energies 2020, 13, 2947. [Google Scholar] [CrossRef]
- Niemiec, M.; Szeląg-Sikora, A.; Cupiał, M. Evaluation of the Efficiency of Celeriac Fertilization with the Use of Slow-acting Fertilizers. Agric. Agric. Sci. Procedia 2015, 7, 177–183. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Niemiec, M.; Sikora, J. Assessment of the content of magnesium, potassium, phosphorus and calcium in water and algae from the black sea in selected bays near Sevastopol. J. Elem. 2016, 21, 915–926. [Google Scholar] [CrossRef]
- Gondek, K.; Mierzwa-Herszt, M.; Kopeć, M.; Sikora, J.; Głąb, T.; Szczurowska, K. Influence of Biochar Application on Reduced Acidification of Sandy Soil, Increased Cation Exchange Capacity, and the Content of Available Forms of K, Mg, and P. Pol. J. Environ. Stud. 2019, 28, 103–111. [Google Scholar] [CrossRef]
Object Number | Wool | Ammonium Sulphate | Potassium Salt | Triple Superphosphate | S | N | P2O5 | K2O |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - |
2 | - | 156 | 200 | 136 | - | 50 | 60 | 120 |
3 | 0.5 | - | 192 | 129 | 9.91 | 57.2 | 60 | 120 |
4 | 1 | - | 183 | 123 | 19.82 | 114.3 | 60 | 120 |
5 | 2 | - | 167 | 111 | 39.64 | 228.6 | 60 | 120 |
pHH2O | pHKCl | Ntotal | Corganic | Nmineral | P | K | Mg | Ca |
---|---|---|---|---|---|---|---|---|
(g∙kg−1) | (mg∙kg−1) | |||||||
6.41 | 5.98 | 0.148 | 1.63 | 39.7 | 64.88 | 174.3 | 69.14 | 422.4 |
C | N | Ca | S | Mg | P | K | Na |
---|---|---|---|---|---|---|---|
% | (g∙kg−1) | ||||||
41.81 | 11.42 | 5.822 | 5.012 | 1.420 | 2.681 | 16.353 | 1.128 |
Type of Agrotechnical Treatment | Functional Unit | Fuel Use [dm3] | Energy Use [MJ] | CO2 Emissions [kg] |
---|---|---|---|---|
Tillage | ha | 66.10 | 2673 | 256.0 |
Mineral fertilization × 1 | 8.710 | 352.4 | 33.80 | |
Cultivation with an aggregate | 38.50 | 1559 | 149.4 | |
Sowing | 28.20 | 1142 | 109.4 | |
Mechanical weed control × 2 | 23.02 | 931.5 | 89.20 | |
Application of plant protection products × 4 | 18.50 | 749.3 | 71.80 | |
Mechanical harvesting | 22.50 | 911.3 | 87.31 | |
Transport to the farm | Mg/km | 0.590 | 23.89 | 2.291 |
Drying | MJ/Mg | 109.0 | 10.30 | |
Wool shredding | kWh/Mg | 30.01 | 32.50 | |
Application of wool | Mg of wool | 4.010 | 150.0 | 14.40 |
Average Temperature °C | Rainfall mm/Month | Evapotranspiration Inde Xmm/Month | |
---|---|---|---|
2020 | |||
V | 15.2 | 54 | 9.20 |
VI | 20.8 | 34 | 11.28 |
VII | 22.3 | 18 | 11.42 |
VIII | 19.1 | 19 | 9.80 |
IX | 14.2 | 15 | 7.64 |
Total | - | 140 | 49.33 |
Type of Plant Protection Product | Active Substance | Dosage in l/ha or kg/ha | No. of Treatments | Amount of Active Substances g/ha | CO2 Emissions kg/ha |
---|---|---|---|---|---|
Bentazon 480SL | Bentazon 480 g/L | 3 | 1 | 1440 | 36.72 |
Agil-S 100 EC | Propachizafop 100g/L | 0.7 | 1 | 70 | 1.79 |
Mospilan 20SP | Acetamipryd 200 g/L | 0.2 | 2 | 40 | 1.02 |
Emission Sources | CO2 Eq Emissions [kg/Mg] | ||||
---|---|---|---|---|---|
Object | |||||
I | II | III | IV | V | |
Production of mineral fertilizers *a | 0 | 490.0 | 86.80 | 82.70 | 75.30 |
Production of seed material a | 140.0 | 140.0 | 140.0 | 140.0 | 140.0 |
Diesel consumption *d | 802.0 | 835.8 | 810.6 | 818.9 | 834.2 |
Preparation of wool *c | 0 | 0 | 16.300 | 32.50 | 65.00 |
Production of pesticides a | 39.50 | 39.50 | 39.50 | 39.50 | 39.50 |
Drying the seeds d | 14.63 | 23.54 | 27.32 | 29.51 | 28.56 |
Mineralization of harvest residues *b | 397.7 | 554.8 | 685.7 | 758.9 | 752.0 |
Organic matter mineralization b | 631.6 | 631.6 | 631.6 | 631.6 | 631.6 |
Fertilization a | 0 | 229.4 | 131.2 | 262.5 | 524.9 |
Wool decomposition after application c | 0 | 0 | 550.0 | 1100 | 2200 |
Object Number | Commercial Yield (t) Average | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
1 | 1.420 | a | |||
2 | 2.285 | b | |||
3 | 2.652 | c | |||
5 | 2.773 | c | d | ||
4 | 2.865 | d |
Xj | Diagnostic Variable | The Strength of the Variable’s Influence on the Synthetic Measure (%) |
---|---|---|
Destimulants | ||
X1 | CO2eq from the production of mineral fertilizers | 6.97 |
X2 | CO2eq from the production of seed material | 0 |
X3 | CO2eq from diesel combustion | 11.61 |
X4 | CO2eq from the preparation (shredding) of wool | 7.89 |
X5 | CO2eq from pesticide production | 27.43 |
X6 | CO2eq from the electricity consumption for drying | 15.53 |
X7 | CO2eq from the mineralization of crop residues | 14.58 |
X8 | CO2eq from soil organic matter mineralization | 0 |
X9 | CO2eq from N2O emissions from fertilizers | 8.06 |
X10 | CO2eq from the decomposition of wool after application | 7.89 |
Group | Characteristics of the Group | Group Variability Range | Observation Results |
---|---|---|---|
I | observations with very low values of the synthetic measure | 0 ≤ qi ≤ min {qi} + 0.4R | 1.2 |
III | observations with average values of the synthetic measure | min {qi} + 0.4R ≤ qi ≤ min {qi} + 0.8R | 3 |
V | observations with very high values of the synthetic measure | min {qi} + 0.8R ≤ qi ≤ 1 | 4–5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowska, M.; Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Findura, P.; Gurgulu, H.; Stuglik, J.; Chowaniak, M.; Atılgan, A. Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan. Energies 2022, 15, 6358. https://doi.org/10.3390/en15176358
Komorowska M, Niemiec M, Sikora J, Szeląg-Sikora A, Gródek-Szostak Z, Findura P, Gurgulu H, Stuglik J, Chowaniak M, Atılgan A. Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan. Energies. 2022; 15(17):6358. https://doi.org/10.3390/en15176358
Chicago/Turabian StyleKomorowska, Monika, Marcin Niemiec, Jakub Sikora, Anna Szeląg-Sikora, Zofia Gródek-Szostak, Pavol Findura, Hatice Gurgulu, Joanna Stuglik, Maciej Chowaniak, and Atılgan Atılgan. 2022. "Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan" Energies 15, no. 17: 6358. https://doi.org/10.3390/en15176358
APA StyleKomorowska, M., Niemiec, M., Sikora, J., Szeląg-Sikora, A., Gródek-Szostak, Z., Findura, P., Gurgulu, H., Stuglik, J., Chowaniak, M., & Atılgan, A. (2022). Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan. Energies, 15(17), 6358. https://doi.org/10.3390/en15176358