Adhesion Forces of Shale Oil Droplet on Mica Surface with Different Roughness: An Experimental Investigation Using Atomic Force Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Tips Functionalization
2.1.1. Crude Oil of Shales
2.1.2. Base Material
2.1.3. Tips Functionalization
2.2. Roughness Measurements
2.3. Contact Angle Measurements
2.4. Adhesion Force Measurements
3. Results
3.1. Surface Roughness
3.2. Wettability
3.3. Adhesion Force between Crude Oil and Mica
4. Discussion
4.1. Relationship between Surface Roughness and Wettability
4.2. Effect of Surface Roughness on Adhesion Force
4.3. Jump-In and Jump-Out Behaviors
4.4. Implications to the Shale Oil Occurrence
5. Conclusions
- (1)
- The surface of mica is not absolutely smooth. The maximum height drop of the mica surface is up to 4 nm, and the average roughness of micas is below 1 nm.
- (2)
- The contact angle between crude oil droplets and mica ranges from 128.7° to 145.8°, and increases with increasing surface roughness. The crude oil droplets fill the grooves in the rough surface of the mica, and thus form ‘wet contact’. The ‘wet contact’ provides microscopic storage spaces for crude oil droplets on rocks.
- (3)
- According to adhesion force measurements between oil droplets and mica surfaces, it was found that the adhesion force increases with increasing roughness. The maximum adhesion force between shale oil droplets and micas is between 14 and 30 nN. The maximum attraction force is reached at a distance of about 5–10 nm. The attraction force vanishes when the distance is greater than 40 nm.
- (4)
- The “jump-in” and “jump-out” behaviors during the force measurements are probably caused by the hydrophilic interaction between the oxygen-containing functional group of crude oil and mica. The hydrophilic interaction affects the layered accumulation of crude oil on the mica surface. The recovery of crude oil requires a decrease in the adhesion force to separate hydrocarbon molecules from the pore space of shales.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Hamaker constant for the tip and the sample surface (J) | |
separation distance between the tip and the sample surface (m) | |
electrical double layer forces force (N) | |
van der Waals forces (N) | |
Boltzmann’s constant (1.381× 10−23 J/K) | |
tip radius (m) | |
average roughness (nm) | |
root mean square roughness (nm) | |
temperature (K) | |
the number of scanning points along the X-axis of the image, respectively | |
the number of scanning points along the Y-axis of the image, respectively | |
the average height of all scanning points in the AFM image (nm) | |
geometric angle for the spherical cap at the tip end | |
relative permittivity of medium | |
permittivity of vacuum (8.854 × 10−12 F/m) | |
Debye length | |
surface potential (V) | |
numerical value contact angle | |
actual contact angle | |
height of cylinder solid surface topographies |
References
- Teklu, T.W.; Alameri, W.; Graves, R.M.; Kazemi, H.; Alsumaiti, A.M. Low-salinity water-alternating-CO2 EOR. J. Pet. Sci. Eng. 2016, 142, 101–118. [Google Scholar] [CrossRef]
- Manshad, A.K.; Rezaei, M.; Moradi, S.; Nowrouzi, I.; Mohammadi, A.H. Wettability alteration and interfacial tension (IFT) reduction in enhanced oil recovery (EOR) process by ionic liquid flooding. J. Mol. Liq. 2017, 248, 153–162. [Google Scholar] [CrossRef]
- Makkonen, L. Young’s equation revisited. J. Phys. Condens. Matter 2016, 28, 135001. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.Y.; Hu, Q.H.; Yang, S.Y.; Qiao, H.; Pu, X.; Han, W. An improved liquid-liquid extraction technique to determine shale wettability. Mar. Pet. Geol. 2022, 138, 105538. [Google Scholar] [CrossRef]
- Xu, S.; Yassin, M.R.; Dehghanpour, H.; Kolbeck, C. The effects of kerogen maturity on pore structure and wettability of organic-rich calcareous shales. J. Mol. Liq. 2022, 362, 119577. [Google Scholar] [CrossRef]
- Alnoush, W.; Sayed, A.; Solling, T.I.; Alyafei, N. Impact of calcite surface roughness in wettability assessment: Interferometry and atomic force microscopy analysis. J. Pet. Sci. Eng. 2021, 203, 108679. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y.; Feng, Z.; Shao, H.; Qiu, J.; Ma, S.; Zhang, J.; Jiang, H.; Li, J.; Gao, B.; et al. Microscale evaluation of tight oil mobility: Insights from pore network simulation. Energies 2021, 14, 4580. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, X.; Wen, Z.; Guo, W.; Tian, W.; Li, S.; Fan, Y.; Luo, Y. Classification and evaluation of shale oil reservoirs of the Chang 71-2 Sub-Member in the Longdong area. Energies 2022, 15, 5364. [Google Scholar] [CrossRef]
- Zhao, F.; Dong, Z.; Wang, C.; Zhang, W.; Yu, R. Pore connectivity characteristics and controlling factors for black shales in the Wufeng-Longmaxi Formation, Southeastern Sichuan Basin, China. Energies 2022, 15, 2909. [Google Scholar] [CrossRef]
- Abudu, A.; Goual, L. Adsorption of crude oil on surfaces using quartz crystal microbalance with dissipation (QCM-D) under flow conditions. Energy Fuels 2009, 23, 1237–1248. [Google Scholar] [CrossRef]
- Huang, J.; Stoyanov, S.R.; Zeng, H. A comparison study on adsorption and interaction behaviors of diluted bitumen and conventional crude oil on model mineral surface. Fuel 2019, 253, 383–391. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Huang, J.; Cui, X.; Tan, X.; Liu, Q.; Zeng, H. Heterogeneous distribution of adsorbed bitumen on fine solids from solvent-based extraction of oil sands probed by AFM. Energy Fuels 2017, 31, 8833–8842. [Google Scholar] [CrossRef]
- Liu, X.; Yan, W.; Stenby, E.H.; Thormann, E. Release of crude oil from silica and calcium carbonate surfaces: On the alternation of surface and molecular forces by high- and low-salinity aqueous salt solutions. Energy Fuels 2016, 30, 3986–3993. [Google Scholar] [CrossRef]
- Zhu, C.; Li, G.; Xing, Y.; Gui, X. Adhesion forces for water/oil droplet and bubble on coking coal surfaces with different roughness. Int. J. Min. Sci. Technol. 2021, 31, 681–687. [Google Scholar] [CrossRef]
- Natarajan, A.; Kuznicki, N.; Harbottle, D.; Masliyah, J.; Zeng, H.B.; Xu, Z.H. Understanding mechanisms of asphaltene adsorption from organic solvent on mica. Langmuir 2014, 30, 9370–9377. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.P.; Hodel, A.W.; Spielhofer, A.; Cattin, C.J.; Muller, D.J.; Helenius, J. Wedged AFM-cantilevers for parallel plate cell mechanics. Methods 2013, 60, 186–194. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Wang, Y.; Ma, Z.; Huang, X. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing. Fuel 2019, 244, 78–90. [Google Scholar] [CrossRef]
- Smith, J.R.; Larson, C.; Campbell, S.A. Recent applications of SEM and AFM for assessing topography of metal and related coatings-a review. Trans. IMF 2011, 89, 18–27. [Google Scholar] [CrossRef]
- Li, C.; Ostadhassan, M.; Guo, S.; Gentzis, T.; Kong, L. Application of peak force tapping mode of atomic force microscope to characterize nanomechanical properties of organic matter of the Bakken Shale. Fuel 2018, 233, 894–910. [Google Scholar] [CrossRef]
- Dickinson, L.R.; Suijkerbuijk, B.M.J.M.; Berg, S.; Marcelis, F.H.M.; Schniepp, H.C. Atomic Force Spectroscopy Using Colloidal Tips Functionalized with Dried Crude Oil: A Versatile Tool to Investigate Oil-Mineral Interactions. Energy Fuels 2016, 30, 9193–9202. [Google Scholar] [CrossRef]
- Okabe, Y.; Akiba, U.; Fujihira, M. Chemical force microscopy of -CH3 and -COOH terminal groups in mixed self-assembled monolayers by pulsed-force-mode atomic force microscopy. Appl. Surf. Sci. 2000, 157, 398–404. [Google Scholar] [CrossRef]
- Okabe, Y.; Furugori, M.; Tani, Y.; Akiba, U.; Fujihira, M. Chemical force microscopy of microcontact-printed self-assembled monolayers by pulsed-force-mode atomic force microscopy. Ultramicroscopy 2000, 82, 203–212. [Google Scholar] [CrossRef]
- Chan, D.Y.C.; Dagastine, R.R.; White, L.R. Forces between a rigid probe particle and a liquid interface. I. The repulsive case. J. Colloid Interface Sci. 2001, 236, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Z.; Masliyah, J. Studies on bitumen-silica interaction in aqueous solutions by atomic force microscopy. Langmuir 2003, 19, 3911–3920. [Google Scholar] [CrossRef]
- Shang, X.Y.; Zhao, K.; Qian, W.X.; Zhu, Q.Y.; Zhou, G.Q. On the calculation of van der Waals force between clay particles. Minerals 2020, 10, 993. [Google Scholar] [CrossRef]
- Barattin, R.; Voyer, N. Chemical modifications of AFM tips for the study of molecular recognition events. Chem. Commun. 2008, 13, 1513–1532. [Google Scholar] [CrossRef]
- Drelich, J.; Long, J.; Yeung, A. Determining surface potential of the bitumen-water interface at nanoscale resolution using atomic force microscopy. Can. J. Chem. Eng. 2007, 85, 625–634. [Google Scholar] [CrossRef]
- Hutter, J.L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Y.; Li, J.; Sima, L.; Wu, Q.; Jin, W.; Wang, T. Experimental study on the wettability of Longmaxi gas shale from Jiaoshiba gas field, Sichuan Basin, China. J. Pet. Sci. Eng. 2017, 151, 488–495. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, H.; Guo, Q.; Lyu, B.; Nie, S.; Wang, H. Modeling water imbibition and penetration in shales: New insights into the retention of fracturing fluids. Energy Fuels 2021, 35, 13776–13787. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Bittoun, E.; Marmur, A. Optimizing Super-Hydrophobic Surfaces: Criteria for Comparison of Surface Topographies. J. Adhes. Sci. Technol. 2009, 23, 401–411. [Google Scholar] [CrossRef]
- Liu, S.B.; Huang, S.J.; Shen, Z.M.; Lü, Z.X.; Song, R.C. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China. Sci. China Earth Sci. 2014, 57, 1077–1092. [Google Scholar] [CrossRef]
- Abbasi Moud, A.; Piette, J.; Danesh, M.; Georgiou, G.C.; Hatzikiriakos, S.G. Apparent slip in colloidal suspensions. J. Rheol. 2022, 66, 79–90. [Google Scholar] [CrossRef]
- Piette, J.; Moud, A.A.; Poisson, J.; Derakhshandeh, B.; Hudson, Z.M.; Hatzikiriakos, S.G. Rheology of mature fine tailings. Phy. Fluids 2022, 34, 063104. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, C.; Lu, Q.; Liu, Q.; Zeng, H. Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: Implications on stability of water-in-oil emulsions. Langmuir 2016, 32, 4886–4895. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, R.; Li, J.; Lu, S.; Li, C.; Guo, Z.; Li, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 833–846. [Google Scholar] [CrossRef]
- Li, J.Q.; Lu, S.F.; Cai, J.C.; Zhang, P.F.; Xue, H.T.; Zhao, X.B. Adsorbed and free oil in lacustrine nanoporous shale: A theoretical model and a case study. Energy Fuels 2018, 32, 12247–12258. [Google Scholar] [CrossRef]
- Guo, Q.; Pan, S.; Yang, F.; Yao, Y.; Zheng, H. Characterizing shale oil occurrence in the Yanchang Formation of the Ordos Basin, assisted by petrophysical and geochemical approaches. Energy Fuels 2022, 36, 370–381. [Google Scholar] [CrossRef]
- Han, Y.; Mahlstedt, N.; Horsfield, B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion. AAPG Bull. 2015, 99, 2173–2202. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Liu, J.; Yao, J.; Kou, J.L.; Li, Z.; Wu, T.H.; Zhang, K.; Zhang, L.; Sun, H. Adsorption behaviors of shale oil in kerogen slit by molecular simulation. Chem. Eng. J. 2020, 387, 124054. [Google Scholar] [CrossRef]
- Zhao, G.; Tan, Q.Y.; Xiang, L.; Cai, D.; Zeng, H.B.; Yi, H.; Ni, Z.H.; Chen, Y.F. Structure and properties of water film adsorbed on mica surfaces. J. Chem. Phys. 2015, 143, 104705. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, Y.; Zhang, B.; Wang, E. Adsorption behaviors of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface studied by atomic force microscopy. Thin Solid Films 2004, 458, 197–202. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Wang, S.; Barifcani, A.; Lebedev, M.; Iglauer, S. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel 2017, 206, 34–42. [Google Scholar] [CrossRef]
- Kondiparty, K.; Nikolov, A.D.; Wasan, D.; Liu, K. Dynamic spreading of nano fluids on solids. Part I: Experimental. Langmuir 2012, 28, 14618–14623. [Google Scholar] [CrossRef]
- Liu, K.L.; Kondiparty, K.; Nikolov, A.D.; Wasan, D. Dynamic spreading of nanofluids on solids part II: Modeling. Langmuir 2012, 28, 16274–16284. [Google Scholar] [CrossRef]
Mica Sample | Average Roughness (Ra, nm) | Root Mean Square Roughness (Rq, nm) | Contact Angle (°) |
---|---|---|---|
A | 0.510 | 0.648 | 145.81 ± 3.0 |
B | 0.402 | 0.505 | 135.52 ± 4.5 |
C | 0.363 | 0.463 | 128.73 ± 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, T.; Yang, F.; Wang, H.; Zheng, H. Adhesion Forces of Shale Oil Droplet on Mica Surface with Different Roughness: An Experimental Investigation Using Atomic Force Microscopy. Energies 2022, 15, 6460. https://doi.org/10.3390/en15176460
Bai T, Yang F, Wang H, Zheng H. Adhesion Forces of Shale Oil Droplet on Mica Surface with Different Roughness: An Experimental Investigation Using Atomic Force Microscopy. Energies. 2022; 15(17):6460. https://doi.org/10.3390/en15176460
Chicago/Turabian StyleBai, Ting’an, Feng Yang, Huan Wang, and He Zheng. 2022. "Adhesion Forces of Shale Oil Droplet on Mica Surface with Different Roughness: An Experimental Investigation Using Atomic Force Microscopy" Energies 15, no. 17: 6460. https://doi.org/10.3390/en15176460
APA StyleBai, T., Yang, F., Wang, H., & Zheng, H. (2022). Adhesion Forces of Shale Oil Droplet on Mica Surface with Different Roughness: An Experimental Investigation Using Atomic Force Microscopy. Energies, 15(17), 6460. https://doi.org/10.3390/en15176460