Experimental Study on the Influence of Effective Stress on the Adsorption–Desorption Behavior of Tectonically Deformed Coal Compared with Primary Undeformed Coal in Huainan Coalfield, China
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Collection and Preparation
2.1.1. Sample Information
2.1.2. Coal Core Preparations
2.2. Experimental Setup
2.3. Test Method
2.3.1. Adsorption Gas Volume
2.3.2. Strain Measurements
2.3.3. Pore Characterization
3. Experimental Results and Analysis
3.1. Pore Distribution
3.2. Adsorption Process
3.2.1. Adsorption Gas Volume
3.2.2. Effective Stress
3.2.3. Adsorption Swelling
3.3. Desorption Process
3.3.1. Desorption under Constant Effective Stress
3.3.2. Desorption under Effective Stress Reduction
- Desorption gas volume
- 2.
- Strain and pore-fissure changes
4. Discussion
4.1. Influence Mechanism of Effective Stress on Adsorption–Desorption
4.2. Response of Gas Absorption–Desorption to Stress Changes
4.3. Promotion of CBM Production
5. Conclusions
- (1)
- Differences in coal core structure and pore connectivity led to different adsorption–desorption behaviors between the TDC and PUC samples. The loose structure of the TDC cores helped the gas to fully contact with the coal matrix, and their adsorption gas volumes were much higher than those of the PUC cores under the same effective stress. When the gas penetrated the coal core, the adsorption gas volume was controlled by the pore connectivity of the coal matrix.
- (2)
- The effective stress affected the adsorption–desorption behavior and gas volumes. The adsorption gas volumes of PUC decreased rapidly with the increase in effective stress. The adsorption gas volumes of the TDC samples changed slightly with the effective stress, but high effective stress made it difficult for gas to desorb quickly after entering the pores, and a large amount of gas was trapped in the coal matrix.
- (3)
- The reservoir depressurization can help to improve the CBM recovery in coal reservoirs by increasing desorption gas volumes and pore-fracture connectivity. The reduction in effective stress can significantly increase the initial desorption gas volume of TDC cores and can promote slow and continuous gas desorption in PUC cores.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Jiang, B.; Qu, M. Macromolecular evolution and structural defects in tectonically deformed coals. Fuel 2019, 236, 1432–1445. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.; Li, X.; Li, J.; Jiang, C. Comparison of the initial gas desorption and gas-release energy characteristics from tectonically-deformed and primary-undeformed coal. Fuel 2019, 238, 66–74. [Google Scholar] [CrossRef]
- Cheng, Y.; Pan, Z. Reservoir properties of Chinese tectonic coal: A review. Fuel 2020, 260, 116350. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhang, Z.; Bo, J. Experimental study on gas desorption of tectonic coal at initial stage. J. China Coal Soc. 2013, 38, 15–20. [Google Scholar]
- Cao, Z.; Lin, B.; Liu, T. The impact of depositional environment and tectonic evolution on coalbed methane occurrence in West Henan, China. Int. J. Min. Sci. Technol. 2019, 29, 297–305. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B.; Chen, T.; Xu, S.; Zhu, G. Experimental study on ultrasonic velocity and anisotropy of tectonically deformed coal. Int. J. Coal Geol. 2017, 179, 242–252. [Google Scholar] [CrossRef]
- Xue, Y.; Ranjith, P.G.; Gao, F.; Zhang, D.; Cheng, H.; Chong, Z.; Hou, P. Mechanical behaviour and permeability evolution of gas-containing coal from unloading confining pressure tests. J. Nat. Gas Sci. Eng. 2017, 40, 336–346. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, Y.; Ren, T.; Zhou, H.; Liu, Q. Permeability distribution characteristics of protected coal seams during unloading of the coal body. Int. J. Rock Mech. Min. Sci. 2014, 71, 105–116. [Google Scholar] [CrossRef]
- Sang, S.; Xu, H.; Fang, L.; Li, G.; Huang, H. Stress relief coalbed methane drainage by surface vertical wells in China. Int. J. Coal Geol. 2010, 82, 196–203. [Google Scholar] [CrossRef]
- Yuan, L. Theory of pressure-relieved gas extraction and technique system of integrated coal production and gas extraction. J. China Coal Soc. 2009, 34, 1–8. [Google Scholar]
- Chen, H.; Cheng, Y.; Zhou, H.; Li, W. Damage and Permeability Development in Coal During Unloading. Rock Mech. Rock Eng. 2013, 46, 1377–1390. [Google Scholar] [CrossRef]
- Li, X.; Fu, X.; Fang, Z.; Hu, H. Experimental study of influence of effective stress on coal adsorption performance. Rock Soil Mech. 2013, 34, 1247–1252. [Google Scholar]
- Zhang, W.; Ju, Y.; Wei, M.; Wang, G. Study on characteristics and mechanism of adsorption/desorption on different metamorphic-deformed coal reservoirs. Earth Sci. Front. 2015, 22, 232–242. [Google Scholar]
- Liu, S.; Ma, J.; Sang, S.; Wang, T.; Du, Y.; Fang, H. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal. Fuel 2018, 223, 32–43. [Google Scholar] [CrossRef]
- Clarkson, C.; Bustin, R.; Levy, J. Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure. Carbon 1997, 35, 1689–1705. [Google Scholar] [CrossRef]
- Bustin, R.M.; Clarkson, C.R. Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 1998, 38, 3–26. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Vandamme, M.; Dangla, P.; Pereira, J.M.; Vidal-Gilbert, S. Adsorptive-mechanical properties of reconstituted granular coal: Experimental characterization and poromechanical modeling. Int. J. Coal Geol. 2016, 162, 158–168. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Kwiatek, L.M. Physical properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption. Int. J. Coal Geol. 2009, 77, 2–9. [Google Scholar] [CrossRef]
- Yao, H.; Kang, Z.; Li, W. Deformation and reservoir properties of tectonically deformed coals. Pet. Explor. Dev. 2014, 41, 460–467. [Google Scholar] [CrossRef]
- Han, F.; Busch, A.; Krooss, B.M.; Liu, Z.; Wageningen, N.V.; Yang, J. Experimental Study on Fluid Transport Processes in the Cleat and Matrix Systems of Coal. Energy Fuels 2010, 24, 117–125. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Perera, M.S.A. A new triaxial apparatus to study the mechanical and fluid flow aspects of carbon dioxide sequestration in geological formations. Fuel 2011, 90, 2751–2759. [Google Scholar] [CrossRef]
- Niu, Q.; Cao, L.; Sang, S.; Wang, W.; Zhou, X.; Yuan, W.; Ji, Z.; Chang, J.; Li, M. Experimental study on the softening effect and mechanism of anthracite with CO2 injection. Int. J. Rock Mech. Min. Sci. 2021, 138, 104614. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Zhao, B.; Yang, D. Nonlinear Coupled Mathematical Model for Solid Deformation and Gas Seepage in Fractured Media. Transp. Porous Media 2004, 55, 119–136. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, X.; Liu, J.; Zhang, R.; Xue, D. Influence of different mining layouts on the mechanical properties of coal. Int. J. Min. Sci. Technol. 2012, 22, 749–755. [Google Scholar] [CrossRef]
- Xu, X.; Sarmadivaleh, M.; Li, C.; Xie, B.; Iglauer, S. Experimental study on physical structure properties and anisotropic cleat permeability estimation on coal cores from China. J. Nat. Gas Sci. Eng. 2016, 35, 131–143. [Google Scholar] [CrossRef]
- Liang, M.; Fu, C.; Xiao, B.; Luo, L.; Wang, Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019, 137, 365–371. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 349, 92–98. [Google Scholar] [CrossRef]
- Ottiger, S.; Pini, R.; Storti, G.; Mazzotti, M. Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Adsorpt. J. Int. Adsorpt. Soc. 2008, 14, 539–556. [Google Scholar] [CrossRef]
- Niu, Q.; Wang, Q.; Wang, W.; Chang, J.; Chen, M.; Wang, H.; Cai, N.; Fan, L. Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction. Energy 2019, 238, 121727. [Google Scholar] [CrossRef]
- Tang, J.; Pan, Y.; Li, C. Experimental study of adsorption and desorption of coalbed methane under three-dimensional stress. Nat. Gas Ind. 2007, 27, 35–38. [Google Scholar]
- He, M.; Wang, C.; Li, D.; Liu, J.; Zhang, X. Desorption characteristics of adsorbed gas in coal samples under coupling temperature and uniaxial compression. Chin. J. Rock Mech. Eng. 2010, 29, 865–872. [Google Scholar]
- Hol, S.; Peach, C.J.; Spiers, C.J. Applied stress reduces the CO2 sorption capacity of coal. Int. J. Coal Geol. 2011, 85, 128–142. [Google Scholar] [CrossRef]
- Laurent, B.; Matthieu, V.; Roland, J.-M.P.; Teddy, F.C. Adsorption-induced deformation of microporous materials: Coal swelling induced by CO2-CH4 competitive adsorption. Langmuir 2012, 28, 2659–2670. [Google Scholar]
- Niu, Q.; Cao, L.; Sang, S.; Zhou, X.; Wang, Z.; Wu, Z. The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals. Energy 2017, 141, 2206–2217. [Google Scholar] [CrossRef]
- Cao, Y.; He, D.; Glick, D.C. Coal and gas outbursts in footwalls of reverse faults. Int. J. Coal Geol. 2001, 48, 47–63. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.; Jiang, C.; Yang, D.; Zhang, C.; Li, X.; Chen, Y.; Tang, J. A method of rapid determination of gas pressure in a coal seam based on the advantages of gas spherical flow field. J. Nat. Gas Sci. Eng. 2017, 45, 502–510. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, Y.; Ren, T.; Wang, L.; Yuan, L.; Jiang, H.; Liu, H. Pulverization characteristics of coal from a strong outburst-prone coal seam and their impact on gas desorption and diffusion properties. J. Nat. Gas Sci. Eng. 2016, 33, 867–878. [Google Scholar] [CrossRef]
- Wu, Y.; Ju, Y.; Hou, Q.; Hu, S.; Pan, J.; Fan, J. Comparison of coalbed gas generation between Huaibei-Huainan coalfields and Qinshui coal basin based on the tectono-thermal modeling. Sci. China Earth Sci. 2011, 54, 1069–1077. [Google Scholar] [CrossRef]
- Ju, Y.; Li, X. New research progress on the ultrastructure of tectonically deformed coals. Prog. Nat. Sci. 2009, 19, 1455–1466. [Google Scholar] [CrossRef]
- Christiansson, R.; Hudson, J. ISRM Suggested Methods for rock stress estimation—Part 4: Quality control of rock stress estimation. Int. J. Rock Mech. Min. Sci. 2003, 40, 1021–1025. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, Y.; Ren, T.; Jing, H.; Tu, Q.; Dong, J. Experimental observations of matrix swelling area propagation on permeability evolution using natural and reconstituted samples. J. Nat. Gas Sci. Eng. 2016, 34, 680–688. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Shao, S.S.; Viete, D.R.; Jaysinge, D. Carbon Dioxide Storage in Coal: Reconstituted Coal as a Structurally Homogeneous Substitute for Coal. Int. J. Coal Prep. Util. 2012, 32, 265–275. [Google Scholar]
- Zhang, Z.G.; Cao, S.G.; Guo, P. Comparison of the deformation characteristics of coal in gas adsorption-desorption process for raw and briquette coals. J. China Univ. Min. Technol. 2014, 43, 387–394. [Google Scholar]
- Fitzgerald, J.E.; Pan, Z.; Sudibandriyo, M.; Robinson, R.L.; Gasem, K.A.M.; Reeves, S. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel 2005, 84, 2351–2363. [Google Scholar] [CrossRef]
- Myers, A.L.; Monson, P.A. Physical adsorption of gases: The case for absolute adsorption as the basis for thermodynamic analysis. Adsorpt. J. Int. Adsorpt. Soc. 2014, 20, 591–622. [Google Scholar] [CrossRef]
- Narongthong, J.; Le, H.; Das, A.; Sirisinha, C.; Wießner, S. Ionic liquid enabled electrical-strain tuning capability of carbon black based conductive polymer composites for small-strain sensors and stretchable conductors. Compos. Sci. Technol. 2019, 174, 202–211. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Zhang, K.; Sang, S.; Liu, C.; Ma, M.; Zhou, X. Experimental study the influences of geochemical reaction on coal structure during the CO2 geological storage in deep coal seam. J. Pet. Sci. Eng. 2019, 178, 1006–1017. [Google Scholar] [CrossRef]
- Zhou, D.; Feng, Z.; Zhao, D.; Zhao, Y.; Cai, T. Experimental study of meso-structural deformation of coal during methane adsorption-desorption cycles. J. Nat. Gas Sci. Eng. 2017, 42, 243–251. [Google Scholar] [CrossRef]
- Pan, J.; Hou, Q.; Ju, Y.; Bai, H.; Zhao, Y. Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel 2012, 102, 760–765. [Google Scholar] [CrossRef]
- Seidle, J.R.; Huitt, L.G. Experimental Measurement of Coal Matrix Shrinkage Due to Gas Desorption and Implications for Cleat Permeability Increases; Society of Petroleum Engineers: Beijing, China, 1995. [Google Scholar]
- Zhang, K.; Sang, S.; Zhou, X.; Liu, C.; Ma, M.; Niu, Q. Influence of supercritical CO2-H2O-caprock interactions on the sealing capability of deep coal seam caprocks related to CO2 geological storage: A case study of the silty mudstone caprock of coal seam no. 3 in the Qinshui Basin, China. Int. J. Gre. Gas Con. 2021, 106, 103282. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Bhatia, S.K.; Nicholson, D. Prediction of High-Pressure Adsorption Equilibrium of Supercritical Gases Using Density Functional Theory. Langmuir 2005, 21, 3187–3197. [Google Scholar] [CrossRef]
- Pillalamarry, M.; Harpalani, S.; Liu, S. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol. 2011, 86, 342–348. [Google Scholar] [CrossRef]
- Liu, C.; Wang, G.; Sang, S.; Gilani, W.; Rudolph, V. Fractal analysis in pore structure of coal under conditions of CO2 sequestration process. Fuel 2015, 139, 125–132. [Google Scholar] [CrossRef]
- White, C.M.; Smith, D.H.; Jones, K.L.; Goodman, A.L.; Schroeder, K.T. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery: A Review. Energy Fuels 2005, 19, 559. [Google Scholar] [CrossRef]
- Wang, J.G.; Liu, J.; Kabir, A. Combined effects of directional compaction, non-Darcy flow and anisotropic swelling on coal seam gas extraction. Int. J. Coal Geol. 2013, 109–110, 1–14. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary and enhanced coalbed methane recovery. Int. J. Coal Geol. 2011, 85, 257–267. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Z.; Wang, S.; Elsworth, D.; Jiang, Y. Impact of transition from local swelling to macro swelling on the evolution of coal permeability. Int. J. Coal Geol. 2011, 88, 31–40. [Google Scholar] [CrossRef]
- Tang, J.; Pan, Y.; Li, C.; Shi, Q.; Dong, Z. Experimental study on effect of effective stress on desorption and seepage of coalbed methane. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 2006, 25, 1563–1568. [Google Scholar]
- George, J.D.S.; Barakat, M.A. The change in effective stress associated with shrinkage from gas desorption in coal. Int. J. Coal Geol. 2001, 45, 105–113. [Google Scholar] [CrossRef]
- Hudson, J.; Harrison, J.; Popescu, M. Engineering Rock Mechanics: An Introduction to the Principles. Appl. Mech. Rev. 2002, 55, 72. [Google Scholar] [CrossRef]
- Wang, S.; Elsworth, D.; Liu, J. Permeability evolution in fractured coal: The roles of fracture geometry and water-content. Int. J. Coal Geol. 2011, 87, 13–25. [Google Scholar] [CrossRef]
- Detournay, E. Fundamentals of poroelasticity. In Comprehensive Rock Engineering; Principles Practice & Projects; Pergamon Press: Oxford, UK, 1993; p. 2. [Google Scholar]
- Izadi, G.; Wang, S.; Elsworth, D.; Liu, J.; Wu, Y.; Pone, D. Permeability evolution of fluid-infiltrated coal containing discrete fractures. Int. J. Coal Geol. 2011, 85, 202–211. [Google Scholar] [CrossRef]
- Dong, J.; Cheng, Y.; Hu, B.; Hao, C.; Tu, Q.; Liu, Z. Experimental study of the mechanical properties of intact and tectonic coal via compression of a single particle. Powder Technol. 2018, 325, 412–419. [Google Scholar] [CrossRef]
Coal Type | Sample ID | Deep /m | Maximum Reflectance of Vitrinite (%) | True Density (g/cm3) | Moisture (%) | Ash (wt, %) | Volatile (wt, %) | Fixed Carbon (wt, %) |
---|---|---|---|---|---|---|---|---|
Primary undeformed coal | PUC | −680 | 0.8 | 1.46 | 1.49 | 19.43 | 34.01 | 45.07 |
Tectonically deformed coal | BDC | −681 | 0.81 | 1.47 | 1.54 | 20.51 | 35.47 | 42.49 |
DDC | −681 | 0.83 | 1.43 | 1.41 | 26.1 | 38.3 | 34.19 |
Sample ID | Particle Diameter (mm) | |||||
---|---|---|---|---|---|---|
>20 | 20–4 | 5–0.2 | 0.2–0.180 | 0.180–0.076 | <0.076 | |
BDC | 35.89% | 14.33% | 16.55% | 30.45% | 2.2% | 0.58% |
DDC | 26.06% | 19.86% | 20.31% | 31.48% | 1.64% | 0.64% |
Coal Type | Samples ID | Es /MPa | VFG /mL | VPS /cm3 | P % | VG /mL | VA /mL | VApg /mL·g−1 |
---|---|---|---|---|---|---|---|---|
PUC | PUC-1 | 1.5 | 68.72 | 2.06 | 1.01 | 525.76 | 457.04 | 1.63 |
PUC-2 | 5 | 53.2 | 1.57 | 0.78 | 362.7 | 309.5 | 1.08 | |
PUC-3 | 8 | 45.23 | 1.32 | 0.68 | 201.95 | 156.72 | 0.57 | |
PUC-4 | 10 | 36.9 | 1.06 | 0.53 | 133.7 | 96.8 | 0.35 | |
PUC-5 | 13 | 35.42 | 1.02 | 0.53 | 92.02 | 56.6 | 0.2 | |
PUC-6 | 15 | 35.6 | 1.02 | 0.5 | 89.1 | 53.5 | 0.19 | |
BDC | BDC-1 | 1.5 | 318.33 | 9.87 | 5.11 | 798.34 | 480.01 | 1.83 |
BDC-2 | 5 | 309.3 | 9.59 | 4.48 | 757.5 | 448.2 | 1.58 | |
BDC-3 | 8 | 300.7 | 9.32 | 4.46 | 739.16 | 438.46 | 1.57 | |
BDC-4 | 10 | 307.7 | 9.54 | 4.44 | 735.5 | 427.8 | 1.46 | |
BDC-5 | 13 | 301.58 | 9.35 | 4.39 | 709.41 | 423.32 | 1.46 | |
BDC-6 | 15 | 302.3 | 9.37 | 4.35 | 712.9 | 410.6 | 1.39 | |
DDC | DDC-1 | 1.5 | 288.64 | 8.94 | 4.3 | 759.19 | 495.37 | 1.82 |
DDC-2 | 5 | 288.7 | 8.94 | 4.26 | 745.99 | 435.1 | 1.55 | |
DDC-3 | 8 | 276.4 | 8.56 | 4.22 | 656.41 | 399.28 | 1.48 | |
DDC-4 | 10 | 272.6 | 8.44 | 4.13 | 645.1 | 372.5 | 1.25 | |
DDC-5 | 13 | 247.95 | 7.67 | 3.51 | 604.47 | 356.51 | 1.23 | |
DDC-6 | 15 | 240.9 | 7.45 | 3.33 | 601.9 | 361 | 1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Sang, S.; Ma, M.; Zhou, X.; Liu, C. Experimental Study on the Influence of Effective Stress on the Adsorption–Desorption Behavior of Tectonically Deformed Coal Compared with Primary Undeformed Coal in Huainan Coalfield, China. Energies 2022, 15, 6501. https://doi.org/10.3390/en15186501
Zhang K, Sang S, Ma M, Zhou X, Liu C. Experimental Study on the Influence of Effective Stress on the Adsorption–Desorption Behavior of Tectonically Deformed Coal Compared with Primary Undeformed Coal in Huainan Coalfield, China. Energies. 2022; 15(18):6501. https://doi.org/10.3390/en15186501
Chicago/Turabian StyleZhang, Kun, Shuxun Sang, Mengya Ma, Xiaozhi Zhou, and Changjiang Liu. 2022. "Experimental Study on the Influence of Effective Stress on the Adsorption–Desorption Behavior of Tectonically Deformed Coal Compared with Primary Undeformed Coal in Huainan Coalfield, China" Energies 15, no. 18: 6501. https://doi.org/10.3390/en15186501
APA StyleZhang, K., Sang, S., Ma, M., Zhou, X., & Liu, C. (2022). Experimental Study on the Influence of Effective Stress on the Adsorption–Desorption Behavior of Tectonically Deformed Coal Compared with Primary Undeformed Coal in Huainan Coalfield, China. Energies, 15(18), 6501. https://doi.org/10.3390/en15186501