A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge
Abstract
:1. Introduction
2. Anaerobic Digestion Fundamental Steps of Action and Microbial Dynamics
3. Sewage Sludge’s Structural Special Features
Characteristics | Primary Sludge (PS) | Waste Activated Sludge (WAS or SS) |
---|---|---|
Total Solids (TS), % | 1–6 | 0.4–1.2 |
Volatile Solids (VS) (%TS) | 60–85 | 59–88 |
Lipids (%TS) | 5–8 | 5–12 |
Protein (%TS) | 20–30 | 32–41 |
N (%TS) | 1.5–4 | 2.4–5 |
P (%TS) | 0.8–2.8 | 2.8–11 |
K (%TS) | 0–1 | 0.5–0.7 |
Cellulose (%TS) | 8–15 | - |
Alkalinity (mg/L as CaCO3) | 500–1500 | 580–1100 |
Organic acids (mg/L as acetate) | 200–2000 | 1100–1700 |
Iron (%TS) | 2–4 | 2 |
Al (%TS) | 0.2 | 0.1–13.5 |
Ca (%TS) | 10 | 0.1–25 |
Mg (%TS) | 0.6 | 0.6 |
pH | 5–8 | 6.5–8 |
Floc size (μm) | 53 | 125 ± 109 |
4. Pretreatment’s Beneficial Aspects
Assessment Criteria of Pretreatment Effectiveness
5. Developed Processes for Sludge Pretreatment Prior to AD
5.1. Physical/Mechanical Pretreatment Technologies
5.1.1. Ultrasonication
5.1.2. Microwave Pretreatment
5.1.3. High-Pressure Homogenization
5.1.4. Electro-Kinetic Disintegration for Sludge Pretreatment
5.1.5. Physical/Mechanical Pretreatments—Concluding Remarks
Pretreatment Technology | Pretreatment Conditions | Effects of Pretreatment | Anaerobic Digestion Conditions | Anaerobic Digestion Performance | References |
---|---|---|---|---|---|
Ultrasonication |
|
|
|
| [12,16,19,65,75,95,116,117,118,119,120,121] |
Microwave |
|
|
|
| [10,16,90,95,98,122,123,124] |
High-pressure Homogenization |
|
|
|
| [13,15,16,106,107] |
Electro-kinetic Disintegration |
|
|
|
| [13,16,112,113,114] |
Low temperature pretreatment |
|
|
|
| [10,12,16,19,125,126] |
High temperature pretreatment |
|
|
|
| [10,13,16,19,127,128,129] |
5.2. Thermal Pretreatments
5.2.1. Low-Temperature Sludge Pretreatment
5.2.2. High-Temperature Sludge Pretreatment
5.2.3. Thermal Pretreatment—Concluding Remarks
5.3. Chemical Pretreatments
5.3.1. Alkaline and Acid Pretreatment
5.3.2. Ozone Pretreatment
5.3.3. Fenton Oxidation
5.3.4. Chemical Pretreatments—Concluding Remarks
Pretreatment Technology | Pretreatment Conditions | Effects of Pretreatment | Anaerobic Digestion Conditions | Anaerobic Digestion Performances | References |
---|---|---|---|---|---|
Alkaline pretreatment |
|
|
|
| [10,13,15,16,19,54,162] |
Acid pretreatment |
TS, 8.75 mL HCl/kg wet sludge
|
|
|
| [16,19,43,56,166] |
Ozonation (O3) |
|
|
|
| [10,13,15,16,19] |
Fenton oxidation |
|
|
|
| [10,12,13,15,16,19,178] |
5.4. Biological Pretreatments
5.4.1. Aerobic Pretreatment
5.4.2. Two-Stage Digestion
5.4.3. Enzyme-Assisted Pretreatment to Enhance AD Performance
5.4.4. Biological Pretreatments—Concluding Remarks
Pretreatment Technology | Mechanism Involved and Pretreatment Conditions | Effects of Pretreatment | Anaerobic Digestion Conditions | Anaerobic Digestion Performances | References |
---|---|---|---|---|---|
Temperature-Phased Anaerobic Digestion (TPAD) |
|
|
|
| [1,3,12,16,19] |
Aerobic pretreatment |
|
|
|
| [3,10,15,20,21,181,182,183,185,186] |
Aerobic pretreatment |
| [3,10,15,20,21,181,182,183,185,186] | |||
Enzyme-assisted pretreatment |
|
|
|
| [3,10,16,19,20,197,198,199] |
5.5. Combined Pretreatment Methods
Combined Pretreatments—Concluding Remarks
Pretreatment Combinations | Effects | Disadvantages | References |
---|---|---|---|
Thermo-Chemical | |||
|
|
| [10,15,51,70,205,209,210,211,212,214] |
Thermo-Mechanical | |||
|
|
| [200,201,202,203,215] |
Mechanical-Chemical | |||
Type of sludge: WAS, Mixed Sludge Ultrasonication—acid addition |
| Need for chemicals | [10,13,15,55,123,161,200,204,206,207,208] |
Ultrasonication—alkaline addition |
| ||
Ultrasonication—ozonation |
| ||
Mechanical-Chemical | |||
Microwave—alkaline addition |
| Need for chemicals | [10,13,15,55,123,161,200,204,206,207,208] |
HPH—alkaline |
| ||
HPH—ozonation |
|
6. Other Emerging Technologies
7. Economic Feasibility of Sludge Pretreatment Methods
8. Environmental Assessment of Sludge Pretreatment Methods
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Appendix A
Pretreatment Technology | Abiotic Depletion | Eutrophication | Climate Change | Human Toxicity | Ecotoxicity | Ozone Layer Depletion | References | |
---|---|---|---|---|---|---|---|---|
ADP (kg Sb-eq) | EP (kg PO43-eq) | GWP (kg CO2-eq) | HTP (kg 1,4-PDB-eq) | TET (kg 1,4-PDB-eq) | FET (kg 1,4-DB-eq) | CFC-11 eq | ||
Physical pretreatment | ||||||||
Ultrasonication | 1.4 × 10−6 ** | 6.6 × 10−7 ** | 4.7 × 10−3 ** | 9.1 × 10−5 ** 6.8 × 10−2 ** | 1.3 × 10−4 ** | 7.0 × 10−10 ** | [226] | |
Microwave pretreatment | ||||||||
High-pressure homogenization | ||||||||
Electro-kinetic disintegration | ||||||||
Thermal Pretreatment | ||||||||
Low temperature pretreatment | 2.3 × 10−3 ** | 6.1 × 10−7 ** | 7.1 × 10−3 ** | 8.6 × 10−5 ** 6.8 × 10−2 ** | 1.2 × 10−4 ** | 7.1 × 10−10 ** | [226] | |
High temperature pretreatment | 2.66 × 10−3 * 1.75 × 10−3 −8.27 × 10−3 *** | 3.70 × 10−3 * 1.13 × 10−5 −5.68 × 10−5 *** | 5.21 × 10−1* 6.85 × 10−3 2.03 × 10−2 *** | 1.11 * 2.36 × 10−4 −1.21 × 10−3 *** | 9.68 × 10−3 −4.60 × 10−2 *** | 3.89 × 10−2 * 1.84 × 10−4 1.82 × 10−2 *** | 4.04 × 10−9 6.45 × 10−9 *** | [224,225] |
Chemical Pretreatment | ||||||||
Alkaline pretreatment | −6.60 × 10−4 * 1.66 × 10−4 −6.36 × 10−3 *** | 2.04 × 10−3 * 1.20 × 10−6 −4.47 × 10−5 *** | 2.18 × 10−2 * 6.16 × 10−4 1.48 × 10−2 *** | 6.52 × 10−1 * 2.65 × 10−5 −9.44 × 10−4 *** | 1.89 × 10−3 −3.45 × 10−2 *** | 2.27 × 10−2 * 2.20 × 10−5 −7.31 × 10−4 *** | 2.66 × 10−10 5.20 × 10−9 *** | [224,225] |
Acid pretreatment | −2.03 × 10−3 * | 2.07 × 10−3 * | −1.28 × 10−1 * | 6.33 × 10−1 | 2.22 × 10−2 * | [224] | ||
Ozonation | 2.20 × 10−3 * | 2.31 × 10−3 * | 3.89 × 10−1 * | 6.27 × 10−1 * | 1.98 × 10−2 * | [224] | ||
Fenton oxidation | ||||||||
Biological Pretreatment | ||||||||
Temperature-Phased Anaerobic Digestion (TPAD) | ||||||||
Aerobic pretreatment | ||||||||
Enzyme-assisted pretreatment | ||||||||
Combined Pretreatments | ||||||||
Thermo-chemical | 4.15 × 10−3 * | 3.53 × 10−3 * | 6.98 × 10−1 * | 1.03 * | 3.53 × 10−2 * | [224] | ||
Thermo-mechanical | 1.03 × 10−3 3.56 × 10−4 **** | 182.62 −12.65 **** | [227] | |||||
Mechanical-chemical |
References
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Trzcinski, A.P. Advanced Biological, Physical, and Chemical Treatment of Waste Activated Sludge, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Singh, L.; Kalia, V.C. Waste Biomass Management-A Holistic Approach; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- WBA, World Biogas Association. Global Potential of Biogas. 2019. Available online: https://www.worldbiogasassociation.org/global-potential-of-biogas/ (accessed on 30 March 2022).
- WBA, World Biogas Association. Biogas: Pathways to 2030. 2021. Available online: https://www.worldbiogasassociation.org/pathwaysto2030/ (accessed on 30 March 2022).
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard Mater. 2020, 389, 121847. [Google Scholar] [CrossRef] [PubMed]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Pilli, S.; Pandey, A.K.; Katiyar, A.; Pandey, K.; Tyagi, R.D. Pre-treatment Technologies to Enhance Anaerobic Digestion. In Sustainable Sewage Sludge Management and Resource Efficiency; Taşeli, B.K., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Cano, R.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Bio/Technol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Volschan Junior, I.; de Almeida, R.; Cammarota, M.C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J. Water Process Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Chatel, G. Sonochemistry: New Opportunities for Green Chemistry; World Scientific Publishing Company: Singapore, 2016. [Google Scholar]
- Pilli, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Thermal Pretreatment of Sewage Sludge to Enhance Anaerobic Digestion: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 45, 669–702. [Google Scholar] [CrossRef]
- Gonzalez, A.; Hendriks, A.; van Lier, J.B.; de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef]
- Brémond, U.; de Buyer, R.; Steyer, J.-P.; Bernet, N.; Carrere, H. Biological pretreatments of biomass for improving biogas production: An overview from lab scale to full-scale. Renew. Sustain. Energy Rev. 2018, 90, 583–604. [Google Scholar] [CrossRef]
- Girotto, F.; Peng, W.; Rafieenia, R.; Cossu, R. Effect of Aeration Applied During Different Phases of Anaerobic Digestion. Waste Biomass Valorization 2016, 9, 161–174. [Google Scholar] [CrossRef]
- Elalami, D.; Carrere, H.; Monlau, F.; Abdelouahdi, K.; Oukarroum, A.; Barakat, A. Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends. Renew. Sustain. Energy Rev. 2019, 114, 109287. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Angelidaki, I.; Batstone, D.J. Anaerobic Digestion: Process. In Solid Waste Technology & Management; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 583–600. [Google Scholar]
- Kwietniewska, E.; Tys, J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew. Sustain. Energy Rev. 2014, 34, 491–500. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Gaspari, M.; Treu, L.; Zhu, X.; Palù, M.; Angelidaki, I.; Campanaro, S.; Kougias, P.G. Microbial dynamics in biogas digesters treating lipid-rich substrates via genome-centric metagenomics. Sci. Total Environ. 2021, 778, 146296. [Google Scholar] [CrossRef]
- Menzel, T.; Neubauer, P.; Junne, S. Role of Microbial Hydrolysis in Anaerobic Digestion. Energies 2020, 13, 5555. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Ni, B.J.; Han, X.; Fan, L.; Yuan, Z. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb. Cell Fact. 2015, 14, 33. [Google Scholar] [CrossRef]
- Hameed, S.A.; Riffat, R.; Li, B.; Naz, I.; Badshah, M.; Ahmed, S.; Ali, N. Microbial population dynamics in temperature-phased anaerobic digestion of municipal wastewater sludge. J. Chem. Technol. Biotechnol. 2019, 94, 1816–1831. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, X.; Chen, H.; Zhou, Y.; Zhou, Y.; Wang, D. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ. 2019, 694, 133741. [Google Scholar] [CrossRef]
- Cai, M.; Wilkins, D.; Chen, J.; Ng, S.K.; Lu, H.; Jia, Y.; Lee, P.K. Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems. Front Microbiol. 2016, 7, 778. [Google Scholar] [CrossRef]
- Yan, W.; Xu, H.; Lu, D.; Zhou, Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: Mechanism, challenges and solutions. Bioresour. Technol. 2022, 344, 126248. [Google Scholar] [CrossRef] [PubMed]
- Talavera-Caro, A.G.; Lira, I.O.H.-D.; Cruz, E.R.; Sánchez-Muñoz, M.A.; Balagurusamy, N. The Realm of Microorganisms in Biogas Production: Microbial Diversity, Functional Role, Community Interactions, and Monitoring the Status of Biogas Plant. In Biogas Production; Springer: Berlin/Heidelberg, Germany, 2020; pp. 179–212. [Google Scholar]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef]
- Latif, M.A.; Mehta, C.M.; Batstone, D.J. Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res. 2017, 113, 42–49. [Google Scholar] [CrossRef]
- Kirkegaard, R.H.; McIlroy, S.J.; Kristensen, J.M.; Nierychlo, M.; Karst, S.M.; Dueholm, M.S.; Albertsen, M.; Nielsen, P.H. The impact of immigration on microbial community composition in full-scale anaerobic digesters. Sci. Rep. 2017, 7, 9343. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Probst, M.; Franke-Whittle, I.H.; Ebner, C.; Podmirseg, S.M.; Etemadi-Shalamzari, M.; Hupfauf, S.; Insam, H. Microbiota in anaerobic digestion of sewage sludge with and without co-substrates. Water Environ. J. 2018, 33, 214–222. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Armato, C.; Pozo, C.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J. New concepts in anaerobic digestion processes: Recent advances and biological aspects. Appl. Microbiol. Biotechnol. 2018, 102, 5065–5076. [Google Scholar] [CrossRef]
- Campanaro, S.; Treu, L.; Kougias, P.G.; De Francisci, D.; Valle, G.; Angelidaki, I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels 2016, 9, 26. [Google Scholar] [CrossRef]
- Kor-Bicakci, G.; Eskicioglu, C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 110, 423–443. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.-L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: An up to date review. Rev. Environ. Sci. Bio/Technol. 2011, 10, 215–242. [Google Scholar] [CrossRef]
- de Sousa, T.A.T.; do Monte, F.P.; Silva, J.; Lopes, W.S.; Leite, V.D.; van Lier, J.B.; de Sousa, J.T. Alkaline and acid solubilisation of waste activated sludge. Water Sci. Technol. 2021, 83, 2980–2996. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Manara, P.; Zabaniotou, A. Towards sewage sludge based biofuels via thermochemical conversion—A review. Renew. Sustain. Energy Rev. 2012, 16, 2566–2582. [Google Scholar] [CrossRef]
- Burton, F.L.; Tchobanoglous, G.; Tsuchihashi, R.; Stensel, H.D.; Metcalf; Eddy, I. Wastewater Engineering: Treatment and Resource Recovery; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Xu, Y.; Lu, Y.; Dai, X.; Dong, B. The influence of organic-binding metals on the biogas conversion of sewage sludge. Water Res. 2017, 126, 329–341. [Google Scholar] [CrossRef]
- Raynaud, M.; Vaxelaire, J.; Olivier, J.; Dieude-Fauvel, E.; Baudez, J.C. Compression dewatering of municipal activated sludge: Effects of salt and pH. Water Res. 2012, 46, 4448–4456. [Google Scholar] [CrossRef] [PubMed]
- Prabakar, D.; Suvetha, K.S.; Manimudi, V.T.; Mathimani, T.; Kumar, G.; Rene, E.R.; Pugazhendhi, A. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. J. Environ. Manag. 2018, 218, 165–180. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, E.; Oh, S.E.; Shin, H.S. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010, 44, 3093–3100. [Google Scholar] [CrossRef]
- Kim, J.; Yu, Y.; Lee, C. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: Effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 2013, 144, 194–201. [Google Scholar] [CrossRef]
- Takashima, M.; Tanaka, Y. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge. Water Sci. Technol. 2010, 62, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Li, Y.; Fei, X.; Wang, S.; Yuan, H. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment. J. Environ. Sci. 2011, 23, 1257–1265. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, H.; Lin, J.; Yuan, W. Evaluation of thermal, thermal-alkaline, alkaline and electrochemical pretreatments on sludge to enhance anaerobic biogas production. J. Taiwan Inst. Chem. Eng. 2014, 45, 2531–2536. [Google Scholar] [CrossRef]
- Xu, G.; Chen, S.; Shi, J.; Wang, S.; Zhu, G. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J. Hazard Mater. 2010, 180, 340–346. [Google Scholar] [CrossRef]
- Sahinkaya, S. Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Saf. Environ. Prot. 2015, 93, 201–205. [Google Scholar] [CrossRef]
- Siami, S.; Aminzadeh, B.; Karimi, R.; Hallaji, S.M. Process optimization and effect of thermal, alkaline, H2O2 oxidation and combination pretreatment of sewage sludge on solubilization and anaerobic digestion. BMC Biotechnol. 2020, 20, 21. [Google Scholar] [CrossRef]
- Akunna, J. Anaerobic Waste-Wastewater Treatment and Biogas Plants: A Practical Handbook; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rani, R.U.; Kumar, S.A.; Kaliappan, S.; Yeom, I.T.; Banu, J.R. Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour. Technol. 2012, 103, 415–424. [Google Scholar] [CrossRef]
- Kim, D.H.; Cho, S.K.; Lee, M.K.; Kim, M.S. Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency. Bioresour. Technol. 2013, 143, 660–664. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, Z.; Pan, Y.; Tan, Y.; Lu, X.; Zhen, G. Does the combined free nitrous acid and electrochemical pretreatment increase methane productivity by provoking sludge solubilization and hydrolysis? Bioresour. Technol. 2020, 304, 123006. [Google Scholar] [CrossRef]
- Dhar, B.R.; Nakhla, G.; Ray, M.B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manag. 2012, 32, 542–549. [Google Scholar] [CrossRef]
- Nazari, L.; Yuan, Z.; Santoro, D.; Sarathy, S.; Ho, D.; Batstone, D.; Xu, C.C.; Ray, M.B. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water Res. 2017, 113, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef] [PubMed]
- Lizama, A.C.; Figueiras, C.C.; Pedreguera, A.Z.; Ruiz Espinoza, J.E. Effect of ultrasonic pretreatment on the semicontinuous anaerobic digestion of waste activated sludge with increasing loading rates. Int. Biodeterior. Biodegrad. 2018, 130, 32–39. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt. J. Pet. 2014, 23, 409–417. [Google Scholar] [CrossRef]
- Hu, Z.; Grasso, D. WATER ANALYSIS | Chemical Oxygen Demand. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 325–330. [Google Scholar]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Shrestha, B.; Hernandez, R.; Fortela, D.L.B.; Sharp, W.; Chistoserdov, A.; Gang, D.; Revellame, E.; Holmes, W.; Zappi, M.E. A Review of Pretreatment Methods to Enhance Solids Reduction during Anaerobic Digestion of Municipal Wastewater Sludges and the Resulting Digester Performance: Implications to Future Urban Biorefineries. Appl. Sci. 2020, 10, 9141. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587–588, 510–521. [Google Scholar] [CrossRef]
- Appels, L.; Houtmeyers, S.; Van Mechelen, F.; Degreve, J.; Van Impe, J.; Dewil, R. Effects of ultrasonic pre-treatment on sludge characteristics and anaerobic digestion. Water Sci. Technol. 2012, 66, 2284–2290. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.-L.; Appels, L.; Dewil, R. Ultrasonic Treatment of Waste Sludge: A Review on Mechanisms and Applications. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1220–1288. [Google Scholar] [CrossRef]
- Feng, X.; Lei, H.; Deng, J.; Yu, Q.; Li, H. Physical and Chemical Characteristics of Waste Activated Sludge Treated Ultrasonically. Chem. Eng. Process. Process Intensif. 2009, 48, 187–194. [Google Scholar] [CrossRef]
- Tytla, M. The Effects of Ultrasonic Disintegration as a Function of Waste Activated Sludge Characteristics and Technical Conditions of Conducting the Process-Comprehensive Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2311. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, S.; Peng, Y.; He, Y.; Wang, S.; Li, L.; Zhao, M. Anaerobic digestion using ultrasound as pretreatment approach: Changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations. Biochem. Eng. J. 2018, 139, 139–145. [Google Scholar] [CrossRef]
- Delmas, H.; Le, N.T.; Barthe, L.; Julcour-Lebigue, C. Optimization of hydrostatic pressure at varied sonication conditions--power density, intensity, very low frequency--for isothermal ultrasonic sludge treatment. Ultrason SonoChem. 2015, 25, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.; Julcour-Lebigue, C.; Delmas, H. An executive review of sludge pretreatment by sonication. J. Environ. Sci. 2015, 37, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Cella, M.A.; Akgul, D.; Eskicioglu, C. Assessment of microbial viability in municipal sludge following ultrasound and microwave pretreatments and resulting impacts on the efficiency of anaerobic sludge digestion. Appl. Microbiol. Biotechnol. 2016, 100, 2855–2868. [Google Scholar] [CrossRef]
- Le, N.T.; Julcour-Lebigue, C.; Barthe, L.; Delmas, H. Optimisation of sludge pretreatment by low frequency sonication under pressure. J. Environ. Manag. 2016, 165, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Şahinkaya, S.; Sevimli, M.F. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion. Ultrason. Sonochem. 2013, 20, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pretreatment of sludge: A review. Ultrason SonoChem. 2011, 18, 1–18. [Google Scholar] [CrossRef]
- Ruiz-Hernando, M.; Martinez-Elorza, G.; Labanda, J.; Llorens, J. Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments. Chem. Eng. J. 2013, 230, 102–110. [Google Scholar] [CrossRef]
- Cai, M.Q.; Hu, J.Q.; Wells, G.; Seo, Y.; Spinney, R.; Ho, S.H.; Dionysiou, D.D.; Su, J.; Xiao, R.; Wei, Z. Understanding Mechanisms of Synergy between Acidification and Ultrasound Treatments for Activated Sludge Dewatering: From Bench to Pilot-Scale Investigation. Environ. Sci. Technol. 2018, 52, 4313–4323. [Google Scholar] [CrossRef]
- Huan, L.; Yiying, J.; Mahar, R.B.; Zhiyu, W.; Yongfeng, N. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J. Hazard. Mater. 2009, 161, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Deng, J.; Lei, H.; Bai, T.; Fan, Q.; Li, Z. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresour. Technol. 2009, 100, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, Y.C.; Apul, O.G. Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion. Curr. Opin. Environ. Sci. Health 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Bordeleau, E.L.; Droste, R.L. Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion. Water Sci. Technol. 2011, 63, 291–296. [Google Scholar] [CrossRef]
- Carciochi, R.A.; D’Alessandro, L.G.; Vauchel, P.; Rodriguez, M.M.; Nolasco, S.M.; Dimitrov, K. Valorization of Agrifood By-Products by Extracting Valuable Bioactive Compounds Using Green Processes. In Ingredients Extraction by Physicochemical Methods in Food; Academic Press: Cambridge, MA, USA, 2017; pp. 191–228. [Google Scholar]
- Appels, L.; Houtmeyers, S.; Degreve, J.; Van Impe, J.; Dewil, R. Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresour. Technol. 2013, 128, 598–603. [Google Scholar] [CrossRef]
- Kuglarz, M.; Karakashev, D.; Angelidaki, I. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants. Bioresour. Technol. 2013, 134, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Park, W.-J.; Ahn, J.-H.; Hwang, S.; Lee, C.-K. Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresour. Technol. 2010, 101, S13–S16. [Google Scholar] [CrossRef] [PubMed]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environ. Res. 2007, 79, 2304–2317. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, X.; Wei, W. Enhancing anaerobic biodegradability and dewaterability of sewage sludge by microwave irradiation. Int. J. Agric. Biol. Eng. 2017, 10, 224–232. [Google Scholar]
- Houtmeyers, S.; Degreve, J.; Willems, K.; Dewil, R.; Appels, L. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour. Technol. 2014, 171, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S.N.; Eskicioglu, C.; Bobowski, J.; Johnson, T. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge. Water Res. 2013, 47, 5040–5051. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.; Siles, J.A.; Martin, M.A.; Chica, A.F.; Estevez-Pastor, F.S.; Toro-Baptista, E. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment. J. Environ. Manag. 2016, 177, 231–239. [Google Scholar] [CrossRef]
- Martínez, E.J.; Gil, M.V.; Rosas, J.G.; Moreno, R.; Mateos, R.; Morán, A.; Gómez, X. Application of thermal analysis for evaluating the digestion of microwave pre-treated sewage sludge. J. Therm. Anal. Calorim. 2016, 127, 1209–1219. [Google Scholar] [CrossRef]
- Coelho, N.M.G.; Droste, R.L.; Kennedy, K.J. Microwave effects on soluble substrate and thermophilic digestibility of activated sludge. Water Environ. Res. 2014, 86, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Sólyom, K.; Mato, R.B.; Pérez-Elvira, S.I.; Cocero, M.J. The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresour. Technol. 2011, 102, 10849–10854. [Google Scholar] [CrossRef]
- Vergine, P.; Zábranská, J.; Canziani, R. Low temperature microwave and conventional heating pre-treatments to improve sludge anaerobic biodegradability. Water Sci. Technol. 2013, 69, 518–524. [Google Scholar] [CrossRef]
- Park, W.-J.; Ahn, J.-H. Effects of Microwave Pretreatment on Mesophilic Anaerobic Digestion for Mixture of Primary and Secondary Sludges Compared with Thermal Pretreatment. Environ. Eng. Res. 2011, 16, 103–109. [Google Scholar] [CrossRef]
- Nabi, M.; Zhang, G.; Li, F.; Zhang, P.; Wu, Y.; Tao, X.; Bao, S.; Wang, S.; Chen, N.; Ye, J.; et al. Enhancement of high pressure homogenization pretreatment on biogas production from sewage sludge: A review. Desalination Water Treat. 2020, 175, 341–351. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Ma, B.; Wu, H.; Zhang, S.; Xu, X. Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model. J. Environ. Sci. 2012, 24, 814–820. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Guo, J.; Ma, W.; Fang, W.; Ma, B.; Xu, X. Sewage sludge solubilization by high-pressure homogenization. Water Sci. Technol. 2013, 67, 2399–2405. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, P.; Zhang, G.; Fan, J.; Zhang, Y. Enhancement of anaerobic sludge digestion by high-pressure homogenization. Bioresour. Technol. 2012, 118, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Onyeche, T. Economic Benefits of Low Pressure Sludge Homogenization for Wastewater Treatment Plants. In Proceedings of the IWA Specialist Conferences, Moving forward Wastewater Biosolids Sustainability, Moncton, NB, Canada, 24–27 June 2007. [Google Scholar]
- Stephenson, R.J.; Laliberte, S.; Hoy, P.Y.M.; Britch, D. Full Scale and Laboratory Scale Results from the Trial of MicroSludge at the JoInt. Water Pollution Control Plant at Los Angeles County; Water Environment Federation: Alexandria, WV, USA, 2007. [Google Scholar]
- Kalogo, Y.; Monteith, H. Energy and Resource Recovery from Sludge. State of Science Report; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2008.
- Lema, J.M.; Suarez, S. Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment; IWA Publishing: London, UK, 2017. [Google Scholar] [CrossRef]
- Poojary, M.M.; Lund, M.N.; Barba, F.J. Pulsed electric field (PEF) as an efficient technology for food additives and nutraceuticals development. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Academic Press: Cambridge, MA, USA, 2020; pp. 65–99. [Google Scholar]
- Lee, I.S.; Rittmann, B.E. Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102, 2542–2548. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jeong, S.W.; Chung, Y.J. Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique. Bioresour. Technol. 2006, 97, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, B.E.; Lee, H.S.; Zhang, H.; Alder, J.; Banaszak, J.E.; Lopez, R. Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane. Water Sci. Technol. 2008, 58, 1895–1901. [Google Scholar] [CrossRef]
- Long, J.H.; Bullard, C.M. Waste Activated Sludge Pretreatment to Boost Volatile Solids Reduction and Digester Gas Production: Market and Technology Assessment; Water Environment Federation: Alexandria, WV, USA, 2014. [Google Scholar]
- Lizama, A.C.; Figueiras, C.C.; Herrera, R.R.; Pedreguera, A.Z.; Ruiz Espinoza, J.E. Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. Int. Biodeterior. Biodegrad. 2017, 123, 1–9. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gianico, A.; Mininni, G. Laboratory-scale ultrasound pre-treated digestion of sludge: Heat and energy balance. Bioresour. Technol. 2011, 102, 7567–7573. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-C.; You, S.-J.; Damodar, R.A.; Chen, Y.-Y. Ultrasound pre-treatment step for performance enhancement in an aerobic sludge digestion process. J. Taiwan Inst. Chem. Eng. 2011, 42, 801–808. [Google Scholar] [CrossRef]
- Martin, M.A.; Gonzalez, I.; Serrano, A.; Siles, J.A. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge. J. Environ. Manag. 2015, 147, 330–337. [Google Scholar] [CrossRef]
- Pilli, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Anaerobic digestion of ultrasonicated sludge at different solids concentrations—Computation of mass-energy balance and greenhouse gas emissions. J. Environ. Manag. 2016, 166, 374–386. [Google Scholar] [CrossRef]
- Mirmasoumi, S.; Ebrahimi, S.; Saray, R.K. Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions. Energy 2018, 157, 707–717. [Google Scholar] [CrossRef]
- Ebenezer, A.V.; Kaliappan, S.; Adish Kumar, S.; Yeom, I.T.; Banu, J.R. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge. Bioresour. Technol. 2015, 185, 194–201. [Google Scholar] [CrossRef]
- Chang, C.J.; Tyagi, V.K.; Lo, S.L. Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion. Bioresour. Technol. 2011, 102, 7633–7640. [Google Scholar] [CrossRef]
- Gil, A.; Siles, J.A.; Martín, M.A.; Chica, A.F.; Estévez-Pastor, F.S.; Toro-Baptista, E. Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge. Renew. Energy 2018, 115, 917–925. [Google Scholar] [CrossRef]
- Ruffino, B.; Campo, G.; Genon, G.; Lorenzi, E.; Novarino, D.; Scibilia, G.; Zanetti, M. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresour. Technol. 2015, 175, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Degreve, J.; Van der Bruggen, B.; Van Impe, J.; Dewil, R. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour. Technol. 2010, 101, 5743–5748. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Pilli, S.; More, T.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions. J. Environ. Manag. 2015, 157, 250–261. [Google Scholar] [CrossRef]
- Lu, H.-W. Evaluation of Solubilization with Thermal Hydrolysis Process of Municipal Biosolids; Virginia Tech: Blacksburg, VA, USA, 2014. [Google Scholar]
- Barber, W.P.F. Thermal hydrolysis for sewage treatment: A critical review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Li, H.; Zhang, Y.; Liu, C.; Chen, Q. Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int. Biodeterior. Biodegrad. 2016, 106, 141–149. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Gao, X.; Zhou, Y.; Shen, R. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag. 2012, 32, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.J.; Beightol, S.; Mandahar, U.; Suzuki, R.; Xiao, S.; Lu, H.W.; Le, T.; Mah, J.; Pathak, B.; DeClippeleir, H.; et al. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics. Water Res. 2017, 122, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, N.; Dai, X.; Tao, W.; Jenkinson, I.R.; Li, Z. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution. Water Res. 2018, 131, 177–185. [Google Scholar] [CrossRef]
- Devos, P.; Haddad, M.; Carrère, H. Thermal Hydrolysis of Municipal sludge: Finding the Temperature Sweet Spot: A Review. Waste Biomass Valorization 2020, 12, 2187–2205. [Google Scholar] [CrossRef]
- Aichinger, P.; DeBarbadillo, C.; Al-Omari, A.; Wett, B. ‘Hot topic’—combined energy and process modeling in thermal hydrolysis systems. Water Sci. Technol. 2019, 79, 84–92. [Google Scholar] [CrossRef]
- Ferrer, I.; Ponsá, S.; Vázquez, F.; Font, X. Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef]
- Nges, I.A.; Liu, J. Effects of anaerobic pre-treatment on the degradation of dewatered-sewage sludge. Renew. Energy 2009, 34, 1795–1800. [Google Scholar] [CrossRef]
- Prorot, A.; Julien, L.; Christophe, D.; Patrick, L. Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach. Biochem. Eng. J. 2011, 54, 178–184. [Google Scholar] [CrossRef]
- Liu, T.; Wu, C.; Wang, Y.; Xue, G.; Zhang, M.; Liu, C.; Zheng, Y. Enhanced Deep Utilization of Low-Organic Content Sludge by Processing Time-Extended Low-Temperature Thermal Pretreatment. ACS Omega 2021, 6, 28946–28954. [Google Scholar] [CrossRef]
- Ratkovich, N.; Horn, W.; Helmus, F.P.; Rosenberger, S.; Naessens, W.; Nopens, I.; Bentzen, T.R. Activated sludge rheology: A critical review on data collection and modelling. Water Res. 2013, 47, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Barber, B. Sludge Thermal Hydrolysis: Application and Potential; IWA Publishing: London, UK, 2020. [Google Scholar]
- Farno, E.; Baudez, J.C.; Parthasarathy, R.; Eshtiaghi, N. Rheological characterisation of thermally-treated anaerobic digested sludge: Impact of temperature and thermal history. Water Res. 2014, 56, 156–161. [Google Scholar] [CrossRef]
- Carrere, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Carrere, H.; Bougrier, C.; Castets, D.; Delgenes, J.P. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2008, 43, 1551–1555. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Dwyer, J.; Starrenburg, D.; Tait, S.; Barr, K.; Batstone, D.J.; Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 2008, 42, 4699–4709. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, Y.; Huang, H.; Khunjar, W.; Wang, Z.W. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge. Environ. Int. 2020, 138, 105629. [Google Scholar] [CrossRef] [PubMed]
- Mottet, A.; Steyer, J.P.; Déléris, S.; Vedrenne, F.; Chauzy, J.; Carrère, H. Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochem. Eng. J. 2009, 46, 169–175. [Google Scholar] [CrossRef]
- Wilson, C.A.; Tanneru, C.T.; Banjade, S.; Murthy, S.N.; Novak, J.T. Anaerobic Digestion of Raw and Thermally Hydrolyzed Wastewater Solids under Various Operational Conditions. Water Environ. Res. 2011, 83, 815–825. [Google Scholar] [CrossRef]
- Toutian, V.; Barjenbruch, M.; Unger, T.; Loderer, C.; Remy, C. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge. Water Res. 2020, 171, 115383. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.J.; Beightol, S.; Mandahar, U.; Xiao, S.; Lu, H.-W.; Le, T.; Mah, J.; Novak, J.; Al-Omari, A.; N Murthy, S. Effect of thermal hydrolysis temperature on anaerobic digestion, dewatering and filtrate characteristics. Proc. Water Environ. Fed. 2014, 2014, 2027–2037. [Google Scholar]
- Hasan, M.; Zhang, Q.; Riffat, R.; Al-Omari, A.; Murthy, S.; Higgins, M.; De Clippeleir, H. Mechanistically Understanding the Dewatering Fundamentals: Impact of Biological Systems and Thermal Hydrolysis on Cake Total Solids and Polymer Demand; Water Environment Federation: Alexandria, WV, USA, 2017. [Google Scholar]
- Bougrier, C.; Albasi, C.; Delgenès, J.P.; Carrère, H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process. Process Intensif. 2006, 45, 711–718. [Google Scholar] [CrossRef]
- Ngo, P.L.; Udugama, I.A.; Gernaey, K.V.; Young, B.R.; Baroutian, S. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment. Chemosphere 2021, 281, 130890. [Google Scholar] [CrossRef]
- Geraats, B. Lysotherm® Sludge Hydrolysis. Five year experience with a novel approach for operational savings. In Proceedings of the 19th European Biosolids & Organic Resources Conference & Exhibition LYSOTHERM®, Manchester, UK, 19–20 November 2014. [Google Scholar]
- Pereboom, J.; Luning, L.; Hol, A.; van Dijk, L.; de Man, A.W.A. Full scale experiences with TurboTec® continuous thermal hydrolysis at WWTP Venlo (NL) and Apeldoorn (NL). In Proceedings of the 19th European Biosolids & Organic Resources Conference & Exhibition, Manchester, UK, 19–20 November 2014. [Google Scholar]
- Williams, T.O.; Burrowes, P. Thermal hydrolysis offerings and performance. In Proceedings of the European Biosolids and Organic Resources Conference, Edinburgh, Scotland, 15–16 November 2016. [Google Scholar]
- Tian, X.; Wang, C.; Trzcinski, A.P.; Lin, L.; Ng, W.J. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge. J. Environ. Sci. 2015, 29, 97–105. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, C.; Liu, J.; Guo, X. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge. Bioresour. Technol. 2015, 196, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, P.; Zhang, G.; Jin, S.; Li, D.; Zhang, M.; Xu, X. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization. Bioresour. Technol. 2014, 168, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Wang, X.; Xu, H.; He, P. Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism. J. Environ. Sci. 2012, 24, 1731–1738. [Google Scholar] [CrossRef]
- Jin, Y.; Li, H.; Mahar, R.B.; Wang, Z.; Nie, Y. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion. J. Environ. Sci. 2009, 21, 279–284. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.; Fu, H.; Guo, M.; Xu, X. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution. Water Res. 2012, 46, 425–432. [Google Scholar] [CrossRef]
- Su, G.; Huo, M.; Yuan, Z.; Wang, S.; Peng, Y. Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: Combined effects of NaOH and Ca(OH)2. Bioresour. Technol. 2013, 136, 237–243. [Google Scholar] [CrossRef]
- Devlin, D.C.; Esteves, S.R.; Dinsdale, R.M.; Guwy, A.J. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 2011, 102, 4076–4082. [Google Scholar] [CrossRef]
- Glińska, K.; Lerigoleur, C.; Giralt, J.; Torrens, E.; Bengoa, C. Valorization of Cellulose Recovered from WWTP Sludge to Added Value Levulinic Acid with a Brønsted Acidic Ionic Liquid. Catalysts 2020, 10, 1004. [Google Scholar] [CrossRef]
- Harmsen, P.; Huijgen, W.; Bermudez, L.; Bakker, R. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass; Wageningen University & Research: Wageningen, The Netherlands, 2010. [Google Scholar]
- Al Momani, F.A.; Schaefer, S.; Sievers, M. Effect of ozone pre-treatment on sludge production of aerobic digestion processes. Int. J. Sustain. Eng. 2011, 4, 181–189. [Google Scholar] [CrossRef]
- Chiavola, A.; D’Amato, E.; Boni, M.R. Effects of low-dosage ozone pre-treatment on the anaerobic digestion of secondary and mixed sludge. Environ. Sci. Pollut. Res. Int. 2019, 26, 35957–35967. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Tokutomi, T.; Yasui, H. Anaerobic Digestion of Excess Activated Sludge with Ozone Pre-Treatment. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2003, 47, 207–214. [Google Scholar] [CrossRef]
- Silvestre, G.; Ruiz, B.; Fiter, M.; Ferrer, C.; Berlanga, J.G.; Alonso, S.; Canut, A. Ozonation as a Pre-treatment for Anaerobic Digestion of Waste-Activated Sludge: Effect of the Ozone Doses. Ozone Sci. Eng. 2014, 37, 316–322. [Google Scholar] [CrossRef]
- Chiavola, A.; D’Amato, E.; Gori, R.; Lubello, C.; Sirini, P. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant. Chemosphere 2013, 91, 656–662. [Google Scholar] [CrossRef]
- Şahinkaya, S.; Kalıpcı, E.; Aras, S. Disintegration of waste activated sludge by different applications of Fenton process. Process Saf. Environ. Prot. 2015, 93, 274–281. [Google Scholar] [CrossRef]
- Aramyan, S.M. Advances in Fenton and Fenton Based Oxidation Processes for Industrial Effluent Contaminants Control-A Review. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 1–4. [Google Scholar] [CrossRef]
- Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Dewil, R.; Appels, L.; Baeyens, J.; Degreve, J. Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. J. Hazard Mater. 2007, 146, 577–581. [Google Scholar] [CrossRef]
- Pilli, S.; More, T.T.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Fenton pre-treatment of secondary sludge to enhance anaerobic digestion: Energy balance and greenhouse gas emissions. Chem. Eng. J. 2016, 283, 285–292. [Google Scholar] [CrossRef]
- Erden, G.; Filibeli, A. Effects of Fenton Pre-Treatment on Waste Activated Sludge Properties. CLEAN Soil Air Water 2011, 39, 626–632. [Google Scholar] [CrossRef]
- Salihu, A.; Alam, M.Z. Pretreatment Methods of Organic Wastes for Biogas Production. J. Appl. Sci. 2016, 16, 124–137. [Google Scholar] [CrossRef]
- Jang, H.M.; Cho, H.U.; Park, S.K.; Ha, J.H.; Park, J.M. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 2014, 48, 1–14. [Google Scholar] [CrossRef]
- Carvajal, A.; Peña, M.; Pérez-Elvira, S. Autohydrolysis pretreatment of secondary sludge for anaerobic digestion. Biochem. Eng. J. 2013, 75, 21–31. [Google Scholar] [CrossRef]
- Ramos, I.; Perez, R.; Reinoso, M.; Torio, R.; Fdz-Polanco, M. Microaerobic digestion of sewage sludge on an industrial-pilot scale: The efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour. Technol. 2014, 164, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Merlin Christy, P.; Gopinath, L.R.; Divya, D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sustain. Energy Rev. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Montalvo, S.; Huiliñir, C.; Ojeda, F.; Castillo, A.; Lillo, L.; Guerrero, L. Microaerobic pretreatment of sewage sludge: Effect of air flow rate, pretreatment time and temperature on the aerobic process and methane generation. Int. Biodeterior. Biodegrad. 2016, 110, 1–7. [Google Scholar] [CrossRef]
- Barati rashvanlou, R.; Rezaee, A.; Farzadkia, M.; Gholami, M.; Kermani, M. Effect of micro-aerobic process on improvement of anaerobic digestion sewage sludge treatment: Flow cytometry and ATP assessment. RSC Adv. 2020, 10, 35718–35728. [Google Scholar] [CrossRef] [PubMed]
- Tsapekos, P.; Kougias, P.G.; Vasileiou, S.A.; Lyberatos, G.; Angelidaki, I. Effect of micro-aeration and inoculum type on the biodegradation of lignocellulosic substrate. Bioresour. Technol. 2017, 225, 246–253. [Google Scholar] [CrossRef]
- Botheju, D.; Bakke, R. Oxygen Effects in Anaerobic Digestion–A Review. Open Waste Manag. J. 2011, 411, 1–19. [Google Scholar] [CrossRef]
- Morello, R.; Di Capua, F.; Pontoni, L.; Papirio, S.; Spasiano, D.; Fratino, U.; Pirozzi, F.; Esposito, G. Microaerobic Digestion of Low-Biodegradable Sewage Sludge: Effect of Air Dosing in Batch Reactors. Sustainability 2021, 13, 9869. [Google Scholar] [CrossRef]
- Lv, W.; Schanbacher, F.L.; Yu, Z. Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes. Bioresour. Technol. 2010, 101, 9409–9414. [Google Scholar] [CrossRef] [PubMed]
- Bolzonella, D.; Pavan, P.; Zanette, M.; Cecchi, F. Two-Phase Anaerobic Digestion of Waste Activated Sludge: Effect of an Extreme Thermophilic Prefermentation. Ind. Eng. Chem. Res. 2007, 46, 6650–6655. [Google Scholar] [CrossRef]
- Ge, H.; Jensen, P.D.; Batstone, D.J. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. J. Hazard. Mater. 2011, 187, 355–361. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, L.R.; Merlin Christy, P. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Xin, X.; He, J.; Li, L.; Qiu, W. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives. Bioresour. Technol. 2018, 250, 69–78. [Google Scholar] [CrossRef]
- Liew, Y.X.; Chan, Y.J.; Manickam, S.; Chong, M.F.; Chong, S.; Tiong, T.J.; Lim, J.W.; Pan, G.T. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total Environ. 2020, 713, 136373. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Wang, Q.; Matsumoto, S.; Maeda, T.; Ogawa, H.I. Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge. Bioresour. Technol. 2009, 100, 2475–2481. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, G.; Li, J.; Zhao, Z.; Kang, X. Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge. Bioresour. Technol. 2013, 146, 758–761. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Y.-J.; Meng, S.-J.; Kiran, E.U.; Liu, Y. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Appl. Energy 2016, 179, 1131–1137. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, K.; Li, X.M.; Wang, D.B.; Zheng, W.; Zeng, G.M.; Liu, J.J. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour. Technol. 2010, 101, 2924–2930. [Google Scholar] [CrossRef]
- Babu, R.; Capannelli, G.; Comite, A. Effect of Different Pretreatments on Sludge Solubilization and Estimation of Bioenergy Potential. Processes 2021, 9, 1382. [Google Scholar] [CrossRef]
- Mostafa, A.; Kim, M.-G.; Im, S.; Lee, M.-K.; Kang, S.; Kim, D.-H. Series of Combined Pretreatment Can Affect the Solubilization of Waste-Activated Sludge. Energies 2020, 13, 4165. [Google Scholar] [CrossRef]
- Kim, D.-J.; Youn, Y. Characteristics of sludge hydrolysis by ultrasound and thermal pretreatment at low temperature. Korean J. Chem. Eng. 2011, 28, 1876–1881. [Google Scholar] [CrossRef]
- Wett, B.; Phothilangka, P.; Eladawy, A. Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag. 2010, 30, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Doğan, I.; Sanin, F.D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method. Water Res. 2009, 43, 2139–2148. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Cui, M.; Wong, J.W.C. Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge. Waste Manag. 2019, 94, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Jiang, J.; Li, D.a. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus. Sci. Total Environ. 2015, 532, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Xiao, K.; Chen, Y.; Soh, Y.N.A.; Zhou, Y. Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: From macro to micro. Water Res. 2018, 142, 138–146. [Google Scholar] [CrossRef]
- Jang, J.-H.; Ahn, J.-H. Effect of microwave pretreatment in presence of NaOH on mesophilic anaerobic digestion of thickened waste activated sludge. Bioresour. Technol. 2013, 131, 437–442. [Google Scholar] [CrossRef]
- Yi, H.; Han, Y.; Zhuo, Y. Effect of Combined Pretreatment of Waste Activated Sludge for Anaerobic Digestion Process. Procedia Environ. Sci. 2013, 18, 716–721. [Google Scholar] [CrossRef]
- Kavitha, S.; Preethi, J.; Rajesh Banu, J.; Yeom, I.T. Low temperature thermochemical mediated energy and economically efficient biological disintegration of sludge: Simulation and prediction studies for anaerobic biodegradation. Chem. Eng. J. 2017, 317, 481–492. [Google Scholar] [CrossRef]
- Budych-Gorzna, M.; Jaroszynski, L.; Oleskowicz-Popiel, P. Improved energy balance at a municipal wastewater treatment plant through waste activated sludge low-temperature alkaline pretreatment. J. Environ. Chem. Eng. 2021, 9, 106366. [Google Scholar] [CrossRef]
- Ruffino, B.; Campo, G.; Cerutti, A.; Zanetti, M.; Lorenzi, E.; Scibilia, G.; Genon, G. Preliminary Technical and Economic Analysis of Alkali and Low Temperature Thermo-alkali Pretreatments for the Anaerobic Digestion of Waste Activated Sludge. Waste Biomass Valorization 2016, 7, 667–675. [Google Scholar] [CrossRef]
- Abelleira-Pereira, J.M.; Pérez-Elvira, S.I.; Sánchez-Oneto, J.; de la Cruz, R.; Portela, J.R.; Nebot, E. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Water Res. 2015, 71, 330–340. [Google Scholar] [CrossRef]
- Liu, J.; Dong, L.; Dai, Q.; Liu, Y.; Tang, X.; Liu, J.; Xiao, B. Enhanced anaerobic digestion of sewage sludge by thermal or alkaline-thermal pretreatments: Influence of hydraulic retention time reduction. Int. J. Hydrogen Energy 2020, 45, 2655–2667. [Google Scholar] [CrossRef]
- Neumann, P.; González, Z.; Vidal, G. Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion. Bioresour. Technol. 2017, 234, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Morais, A.R.; da Costa Lopes, A.M.; Bogel-Lukasik, R. Carbon dioxide in biomass processing: Contributions to the green biorefinery concept. Chem. Rev. 2015, 115, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Escobar, E.L.N.; da Silva, T.A.; Pirich, C.L.; Corazza, M.L.; Pereira Ramos, L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front. Bioeng. Biotechnol. 2020, 8, 252. [Google Scholar] [CrossRef]
- Ahmad, T.; Masoodi, F.; Rather, S.A.; Wani, S.; Gull, A. Supercritical fluid extraction: A review. J. Biol. Chem. Chron 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Mitraka, G.-C.; Kontogiannopoulos, K.N.; Tsivintzelis, I.; Zouboulis, A.I.; Kougias, P.G. Optimization of supercritical carbon dioxide explosion for sewage sludge pre-treatment using response surface methodology. Chemosphere 2022, 297, 133989. [Google Scholar] [CrossRef]
- Kamusoko, R.; Jingura, R.M.; Parawira, W.; Sanyika, W.T. Comparison of pretreatment methods that enhance biomethane production from crop residues—A systematic review. Biofuel Res. J. 2019, 6, 1080–1089. [Google Scholar] [CrossRef]
- Tas, D.O.; Yangin-Gomec, C.; Olmez-Hanci, T.; Arikan, O.A.; Cifci, D.I.; Gencsoy, E.B.; Ekdal, A.; Ubay-Cokgor, E. Comparative Assessment of Sludge Pre-Treatment Techniques to Enhance Sludge Dewaterability and Biogas Production. CLEAN Soil Air Water 2018, 46, 1700569. [Google Scholar] [CrossRef]
- Müller, J.A. Prospects and problems of sludge pre-treatment processes. Water Sci. Technol. 2001, 44, 121–128. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A Review of Sludge-to-Energy Recovery Methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef]
- Carballa, M.; Duran, C.; Hospido, A. Should We Pretreat Solid Waste Prior to Anaerobic Digestion? An Assessment of Its Environmental Cost. Environ. Sci. Technol. 2011, 45, 10306–10314. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Benchmarking environmental and economic indicators of sludge management alternatives aimed at enhanced energy efficiency and nutrient recovery. J. Environ. Manag. 2021, 279, 111594. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Buttazzoni, M.; Gievers, F.; Vance, C.; Magnolo, F.; Murphy, F.; Goi, D. Life cycle assessment of sewage sludge pretreatment for biogas production: From laboratory tests to full-scale applicability. J. Clean. Prod. 2021, 322, 129056. [Google Scholar] [CrossRef]
- Cartes, J.; Neumann Langdon, P.; Hospido, A. Life cycle assessment of management alternatives for sludge from sewage treatment plants in Chile: Does advanced anaerobic digestion improve environmental performance compared to current practices? J. Mater. Cycles Waste Manag. 2018, 20, 1530–1540. [Google Scholar] [CrossRef]
Pretreatment Technology | Investment Cost | Operational Cost | Energy Requirements | References |
---|---|---|---|---|
Physical/Mechanical Pretreatment | ||||
Ultrasonication | Medium to High | Medium to High | High | [1,3,12,16,19,22,70,221,222,223] |
Microwave pretreatment | Medium to High | Medium to High | High | [1,12,16,19,22,70,97,221,222,223] |
High-pressure homogenization | Medium | High | High | [1,3,16,70,222] |
Electro-kinetic disintegration | High | High | High | [1,16,222] |
Thermal Pretreatment | ||||
Low temperature pretreatment | Low to Medium | Low to Medium | High | [12,16,19,22,70,222] |
High temperature pretreatment | High | High | High | [1,12,16,19,22,97,222,223] |
Chemical Pretreatment | ||||
Alkaline pretreatment | Low | Medium | n/a | [1,12,16,19,70,222,223] |
Acid pretreatment | Low | Medium | n/a | [1,3,12,16,19,70,223] |
Ozonation | High | High | High | [1,12,16,70,222,223] |
Fenton oxidation | Low to Medium | High | Low | [1,12,16,19,70] |
Biological Pretreatment | ||||
Temperature-Phased Anaerobic Digestion (TPAD) | Low | Low to Medium | Low | [1,12,19,70,222] |
Aerobic pretreatment | n/a | Low to Medium | Low | [3,12,70,222] |
Enzyme-assisted pretreatment | Low | Medium to High | Low | [12,16,19,70,221,222] |
Combined Pretreatments | ||||
Thermo-Chemical | High * | n/a | High | [12,70] |
Thermo-Mechanical | High * | n/a | High | [12,70] |
Mechanical-Chemical | n/a | Medium | Medium | [12,70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitraka, G.-C.; Kontogiannopoulos, K.N.; Batsioula, M.; Banias, G.F.; Zouboulis, A.I.; Kougias, P.G. A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies 2022, 15, 6536. https://doi.org/10.3390/en15186536
Mitraka G-C, Kontogiannopoulos KN, Batsioula M, Banias GF, Zouboulis AI, Kougias PG. A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies. 2022; 15(18):6536. https://doi.org/10.3390/en15186536
Chicago/Turabian StyleMitraka, Georgia-Christina, Konstantinos N. Kontogiannopoulos, Maria Batsioula, George F. Banias, Anastasios I. Zouboulis, and Panagiotis G. Kougias. 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge" Energies 15, no. 18: 6536. https://doi.org/10.3390/en15186536
APA StyleMitraka, G. -C., Kontogiannopoulos, K. N., Batsioula, M., Banias, G. F., Zouboulis, A. I., & Kougias, P. G. (2022). A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies, 15(18), 6536. https://doi.org/10.3390/en15186536