Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Support Vector Regression
2.2. Hybrid-Kernel Function
- (1)
- Linear kernel function
- (2)
- Polynomial kernel function
- (3)
- Gaussian kernel function
- (4)
- Sigmoid kernel function
2.3. Genetic Algorithm
3. Procedure for Forecasting Using Proposed Regression
3.1. Data Preparing and Preprocessing
3.2. Training and Testing of the Forecasting Model
- Initialization of GA and encoding parameters
- Fitness function computation
- Genetic operation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, H.; Kai, B. Accurate Identification Strategy of Coal and Gangue Using Infrared Imaging Technology Combined with Convolutional Neural Network. IEEE Access 2022, 10, 8758–8766. [Google Scholar]
- Xie, H.P.; Wu, L.X.; Zheng, D.Z. Energy Consumption and Coal Demand Forecasting in 2025 in China. J. China Coal Soc. 2019, 44, 1949–1960. [Google Scholar]
- Han, L.; Ren, W.; Wang, B. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water. Fuel 2019, 253, 1184–1192. [Google Scholar] [CrossRef]
- Guo, Y.C.; Wang, X.Q.; Wang, S. Identification Method of Coal and Coal Gangue Based on Dielectric Characteristics. IEEE Access 2022, 9, 9845–9854. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.G.; Li, Y.S. Recognition Methods for Coal and Coal Gangue Based on Deep Learning. IEEE Access 2021, 9, 77599–77610. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.B. Coal Gangue Detection Method Based on Improved SSD Algorithm. In Proceedings of the 2021 International Conference on Intelligent Transportation, Big Data & Smart City, Frankfurt, Germany, 17–19 September 2021. [Google Scholar]
- Cai, X.J.; Zhang, J.J.; Ning, Z.H. A Many-Objective Multistage Optimization-Based Fuzzy Decision-Making Model for Coal Production Prediction. IEEE Trans. Fuzzy Syst. 2021, 20, 3665–3675. [Google Scholar] [CrossRef]
- Yan, P.C.; Sun, Q.S.; Yin, N.N. Detection of coal and gangue based on improved YOLOv5.1 which embedded scSE module. Measurement 2022, 118, 110530. [Google Scholar] [CrossRef]
- Wu, Y.G.; Yu, X.Y.; Hu, S.Y. Experimental study of the effects of stacking modes on the spontaneous combustion of coal gangue. Process Saf. Environ. Prot. 2019, 123, 39–47. [Google Scholar] [CrossRef]
- Wang, L.L.; Wu, X.C.; Gao, X. A method for in-situ measurement of calorific value of coal: A numerical study. Thermochim. Acta 2021, 703, 179011. [Google Scholar] [CrossRef]
- Chelgain, S.C. Estimation of gross calorific value based on coal analysis using an explainable artificial intelligence. Mach. Learn. Appl. 2021, 6, 100116. [Google Scholar] [CrossRef]
- Cao, X.G.; Fei, J.H.; Wang, P. Research on coal and gangue sorting method based on multi-manipulator cooperation. Coal Sci. Technol. 2019, 47, 7–12. [Google Scholar]
- Ma, J.; Yu, Z.M.; Shu, S.H. Environmental hazard of coal gangue in mining area and its control measures. Coal Eng. 2015, 47, 70–73. [Google Scholar]
- Liu, P.; Yan, F. The harm of coal gangue to environment and its comprehensive control. China Min. Ind. 2008, 8, 49–51. [Google Scholar]
- GBT-213; Determination of Calorific Value of Coal. Standardization Administration of China: Beijing, China, 2008.
- Su, L.L. Research on Coal Gangue Recognition Method Based on Deep Learning; Xi’an University of Science and Technology: Xi’an, China, 2018. [Google Scholar]
- Bi, H.; Wang, C.; Lin, Q. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR. Energy 2020, 213, 118790. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowic, S.; Smola, A. Support vector method for function approximation, regression estimation, and signal processing. Proc. Adv. Neural Inf. Process Syst. 2008, 9, 281–287. [Google Scholar]
- Xie, X.J.; Luo, K.Y.; Wang, G.Q. A New L1 Multi-Kernel Learning Support Vector Regression Ensemble Algorithm with AdaBoost. IEEE Access 2022, 10, 20375–20384. [Google Scholar] [CrossRef]
- Pillonetto, G.; Dinuzzo, F.; Chen, T. Kernel methods in system identification, machine learning and function estimation: A survey. Automatica 2014, 50, 657–682. [Google Scholar]
- Xiao, J.; Wei, C.; Liu, Y. Speed estimation of traffic flow using multiple kernel support vector regression. Phys. A Stat. Mech. Appl. 2018, 509, 989–997. [Google Scholar] [CrossRef]
- Kari, T.; Gao, W.S.; Tuluhong, A. Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformer. Energies 2018, 11, 2437. [Google Scholar] [CrossRef]
- Hiroki, K.; Toshihiro, Y. Mitigation of Kernel Memory Corruption Using Multiple Kernel Memory Mechanism. IEEE Access 2021, 9, 111651–111665. [Google Scholar]
- Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975; pp. 21–24. [Google Scholar]
- Jafari, A.; Khalili, T.; Babaei, E. A Hybrid Optimization Technique Using Exchange Market and Genetic Algorithms. IEEE Access 2020, 8, 2417–2427. [Google Scholar] [CrossRef]
- Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms, 2nd ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
Sample No. | Mad/% | Aad/% | Vad/% | FCad/% | Qb,ad/(MJ/kg) |
---|---|---|---|---|---|
1 | 3.69 | 63.46 | 17.66 | 15.19 | 7.68 |
2 | 1.08 | 66.87 | 16.02 | 16.03 | 7.56 |
3 | 4.52 | 64.14 | 17.2 | 14.14 | 6.56 |
4 | 2.98 | 68.61 | 15.82 | 12.59 | 6.11 |
5 | 1.37 | 65.46 | 17.99 | 15.18 | 8.33 |
6 | 0.98 | 74.88 | 14.72 | 9.42 | 4.64 |
7 | 1.27 | 66.06 | 17.11 | 15.56 | 7.43 |
8 | 2.72 | 65.45 | 17.04 | 14.79 | 7.48 |
9 | 0.85 | 70.38 | 18.47 | 10.3 | 5.31 |
10 | 3.24 | 63.69 | 17.68 | 15.39 | 7.97 |
11 | 2.09 | 70.09 | 15.56 | 12.26 | 6.15 |
12 | 1.84 | 72.24 | 14.88 | 11.04 | 5.44 |
13 | 3 | 63.36 | 17.84 | 15.8 | 7.67 |
14 | 4.42 | 67.96 | 15.36 | 12.26 | 5.66 |
15 | 1.18 | 60.63 | 19.36 | 18.83 | 10.14 |
16 | 1.11 | 57.92 | 20.16 | 20.81 | 11.05 |
17 | 2.06 | 73.44 | 14.22 | 10.28 | 4.79 |
18 | 1.68 | 73.5 | 14.55 | 10.27 | 4.73 |
19 | 1.8 | 71.33 | 15.54 | 11.33 | 5.69 |
20 | 3.3 | 64.5 | 16.79 | 15.41 | 7.72 |
…… | …… | …… | …… | …… | …… |
731 | 1.83 | 63.72 | 17.92 | 16.53 | 8.7 |
732 | 4.2 | 62.9 | 16.74 | 16.16 | 8.01 |
734 | 2.58 | 62.1 | 18.25 | 17.07 | 9.21 |
735 | 2.36 | 73.98 | 13.96 | 9.7 | 4.86 |
736 | 1.26 | 70.26 | 15.6 | 12.88 | 6.06 |
737 | 2.27 | 66.2 | 16.68 | 14.85 | 7.48 |
738 | 3.18 | 62.81 | 17.61 | 16.4 | 8.36 |
739 | 1.12 | 68.72 | 16.39 | 13.77 | 6.5 |
740 | 3.46 | 66.7 | 16.34 | 13.5 | 6.36 |
741 | 15.06 | 55.82 | 20.18 | 8.94 | 5.53 |
742 | 6.66 | 63 | 16.64 | 13.7 | 6.15 |
743 | 5.26 | 65.42 | 14.98 | 14.34 | 5.95 |
744 | 2.43 | 72.7 | 14.34 | 10.53 | 5.39 |
745 | 8.8 | 53.26 | 17.47 | 20.47 | 9.23 |
746 | 7.46 | 52.04 | 20.42 | 20.08 | 8.28 |
747 | 4.36 | 63 | 16.3 | 16.34 | 6.98 |
748 | 5.52 | 63.79 | 14.99 | 15.7 | 6.84 |
749 | 0.8 | 58.56 | 21.47 | 19.17 | 10.25 |
750 | 7.46 | 52.04 | 20.42 | 20.08 | 8.28 |
Algorithms | Parameter | Value |
---|---|---|
SVR | Mixing coefficient μ | (0,1) |
Penalty factor C | (0.01,100) | |
RBF bandwidth σ | (0.01,100) | |
Epsilon ε | (0.001,0.1) | |
GA | Population size | 100 |
Iterations | 100 | |
Crossover probability | 0.8 | |
Mutation probability | 0.02 |
Kernel Function Type | APEmax | APEmin | MAPEavg | r2 |
---|---|---|---|---|
Linear | 0.3163 | 0.0000 | 0.0854 | 0.9635 |
Polynomial | 0.9566 | 0.0000 | 0.1160 | 0.9290 |
Gaussian | 0.6035 | 0.0000 | 0.0814 | 0.9629 |
Sigmoid | 0.3550 | 0.0000 | 0.0892 | 0.9590 |
Kernel Function Type | APEmax | APEmin | MAPEavg | r2 |
---|---|---|---|---|
Linear | 0.4338 | 0.0001 | 0.0801 | 0.9485 |
Polynomial | 0.4695 | 0.0001 | 0.1086 | 0.9320 |
Gaussian | 0.4102 | 0.0000 | 0.0755 | 0.9484 |
Sigmoid | 0.4348 | 0.0001 | 0.0824 | 0.9408 |
Data Set | APEmax | APEmin | MAPEavg | r2 |
---|---|---|---|---|
Training set | 0.3328 | 0.0000 | 0.0347 ± 0.0021 | 0.9771 ± 0.0021 |
Testing set | 0.3695 | 0.0000 | 0.0418 ± 0.0007 | 0.9608 ± 0.0019 |
Methods | Training Set | Testing Set | ||
---|---|---|---|---|
MAPE | r2 | MAPE | r2 | |
RBFNN | 0.0319 | 0.9801 | 0.0542 | 0.8708 |
GRNN | 0.0299 | 0.9817 | 0.0526 | 0.9386 |
Proposed | 0.0054 | 0.9857 | 0.0408 | 0.9635 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Jia, B.; Li, G.; Ma, X. Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm. Energies 2022, 15, 6718. https://doi.org/10.3390/en15186718
Gao X, Jia B, Li G, Ma X. Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm. Energies. 2022; 15(18):6718. https://doi.org/10.3390/en15186718
Chicago/Turabian StyleGao, Xiangbing, Bo Jia, Gen Li, and Xiaojing Ma. 2022. "Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm" Energies 15, no. 18: 6718. https://doi.org/10.3390/en15186718
APA StyleGao, X., Jia, B., Li, G., & Ma, X. (2022). Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm. Energies, 15(18), 6718. https://doi.org/10.3390/en15186718