A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems
Abstract
:1. Introduction
1.1. Overview
1.2. Literature Survey
1.3. Motivation and Incitement
1.4. Research Gaps
1.5. Major Contributions
2. Short-Term Forecasting Methods and Models Used for Power Systems
2.1. Classical Methods of Artificial Intelligence
2.2. Data Mining Methods
- An analysis of large, previously collected data sets to discover new regularities and describe the data in a new way that is understandable and useful for the data owner [107].
- 3.
- 4.
- 5.
- Methods of broadly understood data analysis aimed at identifying previously unknown regularities occurring in large data sets, from which the results are in a form that is easy to interpret by the researcher [109].
2.3. Big Data
3. The State of Research in Short-Term Power Demand Forecasting for Power Systems Using Autoregressive and Non-Autoregressive Methods and Models
4. Conclusions
5. Critical Discussion, Major Findings and Future Scope of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AG | Genetic Algorithm (GA) |
ANFIS | Adaptive Neuro Fuzzy Inference System (ANFIS) |
ANN | Artificial Neural Network (ANN) |
ARIMA | Autoregressive Integrated Moving Average |
C&RT | Classification And Regression Trees |
CHAID | Chi-Square Automatic Interaction Detection |
DEA | Data Envelopment Analysis |
ea | ex ante |
GIS | Geographic Information System |
GPS | Global Positioning System |
IED | Intelligent Electronic Device |
FL | Fuzzy Logic |
MAPE | Mean Average Percentage Error |
MARSplines | Multivariate Adaptive Regression Splines |
MLP | Multilayer Perceptron |
GRM | General Regression Model |
FGRM | Full General Regression Model |
NPS | National Power System |
PSE S.A. | Polskie Sieci Elektroenergetyczne S.A. (The Transmission System Operator in Poland) |
RBF | Radial Basis Function |
FR | Fuzzy Regression |
SARIMAX | Seasonal Auto-Regressive Integrated Moving Average with eXogenous Factors |
SCADA | Supervisory Control and Data Acquisition |
WANN | Wavelet Artificial Neural Network (AWNN) |
SVM | Support Vector Machines |
WAMS | Wide Area Management System |
References
- Aurangzeb, K. Short Term Power Load Forecasting Using Machine Learning Models for Energy Management in a Smart Community. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019. [Google Scholar]
- Conway, D.; Myles, J.; White, J.M. Uczenie Maszynowe Dla Programistów; Wydawnictwo Helion/O’Reilly: Gliwice, Poland, 2015. [Google Scholar]
- Grus, J. Data Science od Podstaw—Analiza Danych w Pythonie; Wydawnictwo Helion/O’Reilly: Gliwice, Poland, 2018. [Google Scholar]
- Kasperski, M.J. Sztuczna Inteligencja—Droga Do Myślących Maszyn; Wydawnictwo Helion: Gliwice, Poland, 2003. [Google Scholar]
- Li, J.; Song, Z.; Zhong, Y.; Zhang, Z. Short-Term Load Forecasting Based on Improved Extreme Learning Machine. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis, Beijing, China, 10–12 March 2017. [Google Scholar]
- Theodoridis, S. Probability and Stochastic Processes. Machine Learning: A Bayesian and Optimization Perspective. Chapter 1; Academic Press: London, UK, 2015; pp. 9–51. [Google Scholar]
- Tadeusiewicz, R. Podstawy Biocybernetyki; PWN: Warszawa, Poland, 1991. [Google Scholar]
- Bian, H.; SPSS Discriminant Function Analysis. Office for Faculty Excellence. 2012. Available online: http://kharazmi-statistics.ir/Uploads/Public/MY%20article/SPSS%20Discriminant%20Function%20Analysis.pdf (accessed on 15 March 2016).
- Cottrell, A.; Lucchetti, R.; Gretl User’s Guide—Gnu Regression, Econometrics and Time—Series Library. (Gretl-Guide). 2015. Available online: http://gretl.sourceforge.net/gretl-help/gretl-guide.pdf (accessed on 15 March 2016).
- Kufel, T. Rozwiązywanie Problemów z Wykorzystaniem Programu GRETL; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2015. [Google Scholar]
- Kamiński, J.; Kaszyński, P. Wybrane problemy implementacji zapotrzebowania na moc w matematycznych modelach systemów energetycznych. Polityka Energetyczna 2011, 14, 155–166. [Google Scholar]
- Paska, J. Ekonomika w Elektroenergetyce; Wydawnictwo OWPW: Warszawa, Poland, 2007. [Google Scholar]
- Dwijayanti, S.; Hagan, M. Short Term Load Forecasting Using a Neural Network Based Time Series Approach. In Proceedings of the 1st International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Malaysia, 3–5 December 2013. [Google Scholar]
- Dobrzańska, I. (Ed.) Zmienność obciążeń systemów energetycznych ich analiza i metoda prognozy na przykładzie zespołu systemów polskich. In Analiza i Prognoza Obciążeń Elektroenergetycznych; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 1971. [Google Scholar]
- Dobrzańska, I. (Ed.) Analiza zmienności obciążeń polskiego systemu energetycznego. In Analiza i Prognoza Obciążeń Elektroenergetycznych; Wydawnictwa Naukowo—Techniczne: Warszawa, Poland, 1971; Available online: http://elektroenergetyka.pl/upload/file/2005/3/elektroenergetyka_nr_05_03_2.pdf (accessed on 16 March 2016).
- Dobrzańska, I. (Ed.) Wpływ czasu letniego na wykres obciążenia dobowego systemów energetycznych w Polsce. In Analiza i Prognoza Obciążeń Elektroenergetycznych; Wydawnictwa Naukowo—Techniczne: Warszawa, Poland, 1971. [Google Scholar]
- Dyka, E.; Mróz-Radłowsk. Ekonomia w Energetyce. Wydawnictwo Politechniki Łódzkiej, Łódź. 2016. Available online: https://cybra.lodz.pl/Content/12517/EDyka_EkonomikaEnergetyka_2014_1.pdf (accessed on 28 December 2016).
- Al-Fuhaid, A.S.; El-Sayed, M.A.; Mahmoud, M.S. Neuro-Short-Term Load Forecast of the Power System in Kuwait. Appl. Math. Model. 1997, 21, 215–219. [Google Scholar] [CrossRef]
- Almeshaiei, E.; Soltan, H. A Methodology for Electric Power Load Forecasting. Alex. Eng. J. 2011, 50, 137–144. [Google Scholar] [CrossRef]
- Al-Shobaki, S.; Mohsen, M. Modeling and Forecasting of Electrical Power Demands for Capacity Planning. Energy Convers. Manag. 2008, 49, 3367–3375. [Google Scholar] [CrossRef]
- Badran, S.M.; Abouelatta, O.B. Forecasting Electrical Load Using ANN Combined with Multiple Regression Method. Res. Bull. Jordan ACM 2012, 2. [Google Scholar]
- Brodowski, S.; Bielecki, A.; Filocha, M. A Hybrid System for Forecasting 24-h Power Load Profile for Polish Electric Grid. Appl. Soft Comput. 2017, 58, 527–539. [Google Scholar] [CrossRef]
- Buitrago, J.; Asfour, S. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs. Energies 2017, 10, 40. [Google Scholar] [CrossRef]
- Ceperic, E.; Ceperic, V.; Baric, A. A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines. IEEE Trans. Power Syst. 2013, 28, 4356–4364. [Google Scholar] [CrossRef]
- Chahkoutahi, F.; Khashei, M. A Seasonal Direct Optimal Hybrid Model of Computational Intelligence and Soft Computing Techniques for Electricity Load Forecasting. Energy 2017, 140, 988–1004. [Google Scholar] [CrossRef]
- Chapagain, K.; Kittipiyakul, S. Short-Term Electricity Load Forecasting Model and Bayesian Estimation for Thailand Data. MATEC Web Conf. 2016, 55, 6003. [Google Scholar] [CrossRef]
- Chen, H.; Canizares, C.A.; Singh, A. ANN-Based Short-Term Load Forecasting in Electricity Markets; University of Waterloo Department of Electrical & Computer Engineering: Waterloo, ON, Canada, 1999. [Google Scholar]
- Chheepa, T.K.; Manglani, T. A Critical Review on Employed Techniques for Short Term Load Forecasting. Int. Res. J. Eng. Technol. (IRJET) 2017, 4, 2453–2460. [Google Scholar]
- Clements, A.E.; Hurn, A.S.; Li, Z. Forecasting Day-Ahead Electricity Load Using a Multiple Equation Time Series Approach; NCER Working Paper Series; Working Paper #103; School of Economics and Finance; Queensland University of Technology: Brisbane, Australia, 2015. [Google Scholar]
- Czapaj, R. Typowanie zmiennych objaśniających przy wykorzystaniu zautomatyzowanych metod statystycznych jako sposób optymalizacji wyboru metody estymacji szczytowego dobowego obciążenia KSE. Przegląd Elektrotech. 2018, 93, 58–61. [Google Scholar]
- Czapaj, R.; Kamiński, J.; Benalcazar, P. Dobór zmiennych objaśniających z wykorzystaniem metody MARSplines. In Proceedings of the XIV Międzynarodowa Konferencja Naukowa Prognozowanie w Elektroenergetyce PE’18, Podlesice, Poland, 26–28 September 2018. [Google Scholar]
- Czapaj, R.; Kamiński, J.; Benalcazar, P. Prognozowanie krótkoterminowe zapotrzebowania na energię elektryczną w KSE z wykorzystaniem metody MARSplines. In Proceedings of the XIV Międzynarodowa Konferencja Naukowa Prognozowanie w Elektroenergetyce PE’18, Podlesice, Poland, 26–28 September 2018. [Google Scholar]
- Dąsal, K. Dobór zmiennych wejściowych do Modelu Rozkładu Kanonicznego. In Proceedings of the VI Konferencja Naukowa Prognozowanie w Elektroenergetyce, Prognozowanie, Efektywność Energetyczna, Częstochowa, Poland, 18–20 September 2002. [Google Scholar]
- Dudek, G. Short-Term Load Forecasting Based on Kernel Conditional Density Estimation; Przegląd Elektrotechniczny (Electrical Review); Czestochowa University of Technology: Częstochowa, Poland, 2010. [Google Scholar]
- Dudek, G.; Janicki, M. Nearest Neighbour Model with Weather Inputs for Pattern-Based Electricity Demand Forecasting; Department of Electrical Engineering, Czestochowa University of Technology: Częstochowa, Poland, 2017. [Google Scholar]
- Dudek, G. Pattern-Based Local Linear Regression Models for Short-Term Load Forecasting; Department of Electrical Engineering, Czestochowa University of Technology: Częstochowa, Poland, 2016; Volume 130, pp. 139–147. [Google Scholar]
- Dudek, G. Drzewa regresyjne i lasy losowe jako narzędzia predykcji szeregów czasowych z wahaniami sezonowymi. In Proceedings of the VI spotkanie Polskiej Grupy Badawczej Systemów Uczących Się, Częstochowa, Poland, 14 April 2016. [Google Scholar]
- Esener, I.I.; Yuksel, T.; Kurban, M. Short-Term Load Forecasting without Meteorological Data Using AI-based Structures. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 370–380. [Google Scholar] [CrossRef]
- Fan, S.; Hyndman, R.J. Short-Term Load Forecasting Based on a Semi-Parametric Additive Model. IEEE Trans. Power Syst. 2012, 27, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Farahat, M.A.; Elgawed, A.F.A.; Ibrahim, A.; Mustafa, H.M.M. Short Term Load Forecasting Using Neural Networks and Particle Swarm Optimization. J. Electr. Eng. 2014, 1–10. [Google Scholar]
- Gorwar, M.; Harsha, J.S. Short Term Load Forecasting using Time Series Analysis: A case study for Karnataka, India. Int. J. Eng. Sci. Innov. Technol. (IJESIT) 2012, 1. [Google Scholar]
- Hassan, S.; Khosravi, A.; Jaafar, J. Examining performance of aggregation algorithms for neural network-based electricity demand forecasting. Electr. Power Energy Syst. 2015, 64, 1098–1105. [Google Scholar] [CrossRef]
- He, W. Deep Neural Network Based Load Forecast. Comput. Model. New Technol. 2014, 18, 258–262. [Google Scholar]
- Hong, T.; Wang, P. Fuzzy Interaction Regression for Short Term Load Forecasting. Fuzzy Optim. Decis. Mak. 2014, 13, 91–103. [Google Scholar] [CrossRef]
- Janicki, M. Temperature Correction Method for Pattern Similarity-Based Short-Term Electricity Demand Forecasting Models; Faculty of Electrical Engineering, Czestochowa University of Technology: Czestochowa, Poland, 2017. [Google Scholar]
- Kheirkhah, A.; Azadeh, A.; Saberi, M.; Azaron, A.; Shakouri, H. Improved Estimation of Electricity Demand Function by Using of Artificial Neural Network, Principal Component Analysis and Data Envelopment Analysis. Comput. Ind. Eng. 2013, 64, 425–441. [Google Scholar] [CrossRef]
- Kolcun, M.; Holka, L. Daily Load Diagram Prediction of Eastern Slovakia. In Proceedings of the VI Konferencja Naukowa Prognozowanie w Elektroenergetyce, Prognozowanie, Efektywność Energetyczna, Częstochowa, Poland, 18–20 September 2002. [Google Scholar]
- Lin, Y.; Luo, H.; Wang, D.; Guo, H.; Zhu, K. An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting. Energies 2017, 10, 1186. [Google Scholar] [CrossRef]
- Liu, N.; Babushkin, V.; Afshari, A. Short-Term Forecasting of Temperature Driven Electricity Load Using Time Series and Neural Network Model. J. Clean Energy Technol. 2014, 2, 327–331. [Google Scholar] [CrossRef]
- Magnano, L.; Boland, J.W. Generation of Synthetic Sequences of Electricity Demand: Application in South Australia. Energy 2007, 32, 2230–2243. [Google Scholar] [CrossRef]
- Nadtoka, I.I.; Al-Zihery Balasim, M. Forecasting of Electricity Consumption of the Power System, with Due Account of Air Temperature and Natural Illumination, Based on Support Vector Machine and Particle Swarm. Procedia Eng. 2015, 129, 657–663. [Google Scholar] [CrossRef]
- Narayan, A.; Hipel, K.W. Long Short Term Memory Networks for Short-Term Electric Load Forecasting. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017. [Google Scholar]
- Nowicka-Zagrajek, J.; Weron, R. Modeling Electricity Loads in California: ARMA Models with Hyperbolic Noise. Signal Processing 2002, 82, 1903–1915. [Google Scholar] [CrossRef]
- Nowotarski, J.; Liu, B.; Weron, R.; Hong, T. Improving Short Term Load Forecast Accuracy via Combining Sister Forecasts; Hugo Steinhaus Center Wrocław University of Technology: Wrocław, Poland, 2015. [Google Scholar]
- Hsiao-Tien, P. Forecast of Electricity Consumption and Economic Growth in Taiwan by State Space Modeling. Energy 2009, 34, 1779–1791. [Google Scholar]
- Rana, M.; Koprinska, I. Forecasting Electricity Load with Advanced Wavelet Neural Networks. Neurocomputing 2016, 182, 118–132. [Google Scholar] [CrossRef]
- Siwek, K.; Osowski, S. Prognozowanie obciążeń 24—godzinnych w systemie elektroenergetycznym z użyciem zespołu sieci neuronowych. Przegląd Elektrotech. 2009, 85, 540–544. [Google Scholar]
- Sevlian, R.A.; Rajagopal, R. A Model For The Effect of Aggregation on Short Term Load Forecasting; Department of Electrical Engineering, Stanford University: Stanford, CA, USA, 2014. [Google Scholar]
- Sousa, J.C.; Neves, L.P.; Jorge, H.M. Assessing the relevance of load profiling information in electrical load forecasting based on neural network Models. Electr. Power Energy Syst. 2012, 40, 85–93. [Google Scholar] [CrossRef]
- Wang, P.; Liu, B.; Hong, T. Electric Load Forecasting with Recency Effect: A Big Data Approach. Int. J. Forecast. 2016, 32, 585–597. [Google Scholar] [CrossRef]
- Wang, Y.; Bielicki, J.M. Acclimation and the Response of Hourly Electricity Loads to Meteorological Variables. Energy 2017, 142, 473–485. [Google Scholar] [CrossRef]
- Wyrozumski, T. Prognozowanie neuronowe w energetyce. In Proceedings of the Konferencja Naukowa Rynek Energii Elektrycznej-Materiały Konferencyjne, Kazimierz Dolny, Poland, 25–27 April 2005. [Google Scholar]
- Yang, J. Power System Short-Term Load Forecasting. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2006. [Google Scholar]
- Yu, X.; Ji, H. A PSO–SVM-based 24 Hours Power Load Forecasting Model. MATEC Web Conf. 2015, 25, 01008. [Google Scholar] [CrossRef]
- Bartkiewicz, W. Metody określania niepewności prognoz krótkoterminowego obciążenia sieci dla modeli neuronowych i neuronowo—rozmytych. Rynek Energii 2011, 1, 41–46. [Google Scholar]
- Bartkiewicz, W. Modelowanie Krótkoterminowego Popytu na Energie Elektryczną z Wykorzystaniem Sieci Neuronowych i Neuronowo—Rozmytych. Katedra Informatyki, Wydział Zarządzania, Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego. 2013. Available online: www.wydawnictwo.uni.lodz.pl (accessed on 15 March 2016).
- Bartkiewicz, W.; Matusiak, B. Sieci Neuronowe i Algorytmy Genetyczne a Krótkookresowe Prognozowanie Zużycia na Rynku Energii. w: J.S. Zieliński—50 Lat Pracy Naukowej. Wydawnictwo Biblioteka, 2004. Str. 345–353. Available online: https://docplayer.pl/10286641-Prognozowanie-w-elektroenergetyce-w-roznych-horyzontach-czasowych.html (accessed on 21 September 2017).
- Filik, U.B.; Kurban, M.A. New Approach for the Short-Term Load Forecasting with Autoregressive and Artificial Neural Network Models. Int. J. Comput. Intell. Res. 2007, 3, 66–71. [Google Scholar]
- Ishida, T.; Tamura, S. Daily Electric Load Forecasting Using Artificial Neural Network. Electr. Eng. Jpn. 1994, 114, 1109–1115. [Google Scholar] [CrossRef]
- Jetcheva, J.G.; Majidpour, M.; Chen, W.P. Neural Network Model Ensembles for Building—Level Electricity Load Forecasts. Energy Build. 2014, 84, 214–223. [Google Scholar] [CrossRef]
- Makino, K.; Shimada, T. Daily Peak Electric Load Forecasting Using an Artificial Neural Network and an Improvement Method for Reducing the Forecasting Errors. Electr. Eng. Jpn. 1995, 114, 27–42. [Google Scholar] [CrossRef]
- Malko, J. Sztuczne sieci neuronowe—Nowe narzędzie prognozowania elektroenergetycznego. In Proceedings of the Materiały Konferencyjne Aktualne Problemy w Elektroenergetyce APE’97, Gdańsk, Poland, 11–13 June 1997. [Google Scholar]
- Masters, T. Sieci Neuronowe w Praktyce (Programowanie w Języku C++); WNT: Warszawa, Poland, 1996. [Google Scholar]
- Osowski, S. Sieci Neuronowe; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 1996. [Google Scholar]
- Piotrowski, P. Prognozowanie krótkoterminowe godzinowych obciążeń w spółce dystrybucyjnej z wykorzystaniem sieci neuronowych—Analiza wpływu doboru i przetworzenia danych na jakość prognoz. Przegląd Elektrotech. 2007, 83, 40–43. [Google Scholar]
- Piotrowski, P. Analiza skuteczności wybranych algorytmów uczących sieci neuronowych typu MLP w zadaniu prognozowania krótkoterminowego zapotrzebowania na energię elektryczną na potrzeby spółek dystrybucyjnych. Śląskie Wiadomości Elektryczne 2011, 1, 18–24. [Google Scholar] [CrossRef]
- Piotrowski, P. Prognozowanie w Elektroenergetyce w Różnych Horyzontach Czasowych. Rozprawa Habilitacyjna. Politechnika Warszawska, Instytut Elektroenergetyki, Prace Naukowe Elektryka z. 144. Warszawa 2013. Oficyna Wydawnicza Politechniki Warszawskiej. 2013. Available online: http://www.nazarko.pl/public/data/resource/upload/00003/2568/file/prognozowanie_w_elektroenergetyce_w_roznych_horyzontach_czasowych.pdf (accessed on 28 June 2017).
- Piotrowski, P.; Górski, M. Ekonomiczne aspekty krótkoterminowego prognozowania zużycia energii elektrycznej wybranych grup odbiorców przy wykorzystaniu techniki sieci neuronowych. In Proceedings of the VIII Międzynarodowa Konferencja Naukowa pt. Aktualne problemy w Elektroenergetyce (APE-99), Jurata, Poland, 9–11 June 1999. [Google Scholar]
- Kvhashei, M.; Bijari, M.; Ardali, G.A.R. Improvement of Auto-Regressive Integrated Moving Average Models using Fuzzy Logic and Artificial Neural Networks (ANNs). Neurocomputing 2009, 72, 956–967. [Google Scholar] [CrossRef]
- Lang, J.; Pascoe, S.; Thomson, J.; Woyak, J.; Rahimi, K.; Broadwater, R. Smart Grid Big Data: Automating Analysis of Distribution Systems. In Proceedings of the 2016 IEEE Rural Electric Power Conference (REPC), Westminster, CO, USA, 15–18 May 2016.
- Piotrowski, P. Krótkoterminowe prognozy zapotrzebowania na energię elektryczną dla spółek dystrybucyjnych w warunkach rynku energii przy wykorzystaniu technik sztucznej inteligencji. In Proceedings of the X Międzynarodowa Konferencja Naukowa pt. Aktualne problemy w Elektroenergetyce (APE-01), Jurata, Poland, 6–8 June 2001; pp. 117–124. [Google Scholar]
- Tadeusiewicz, R. Elementarne Wprowadzenie do Techniki Sieci Neuronowych z Przykładowymi Programami; Akademicka Oficyna Wydawnicza PLJ: Warszawa, Poland, 1998. [Google Scholar]
- Witkowska, D. Sztuczne Sieci Neuronowe i Metody Statystyczne. Wybrane Zagadnienia Finansowe; C.H. Beck: Warszawa, Poland, 2002. [Google Scholar]
- Helt, P.; Parol, M.; Piotrowski, P. Metody Sztucznej Inteligencji w Elektroenergetyce; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2000. [Google Scholar]
- Bazzan, A.L.C.; Labidi, S. (Eds.) Advances in Artificial Intelligence. 17th Brazilian Symposium on Artificial Intelligence, Săo Luis, Maranhăo, Brazil, September 29–October 1, 2004, Proceedings; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004; pp. 317–325. [Google Scholar]
- Akademia Podlaska. Sztuczna inteligencja—Materiały V Konferencji Naukowej; Instytut Informatyki Akademii Podlaskiej, Instytut Podstaw Informatyki Polskiej Akademii Nauk i Wydział Cybernetyki Wojskowej Akademii Technicznej, Wydawnictwo Akademii Podlaskiej: Siedlce, Poland, 2002. [Google Scholar]
- Xu, Z.; Dong, Z.Y.; Liu, W.Q. Neural Network Models For Electricity Market Forecasting. Neural Netw. Appl. Inf. Technol. Web Eng. 2005, 1, 233–245. [Google Scholar]
- Czapaj, R. O możliwości krótkoterminowego prognozowania cen energii elektrycznej na polskich parkietach obrotu z uwzględnieniem indeksu niemieckiej giełdy EEX AG. Przegląd Elektrotech. 2009, 85, 140–143. [Google Scholar]
- Dudek, G. Krótkoterminowe prognozowanie zapotrzebowania na moc elektryczną metodą klasteryzacji rozmytej. Przegląd Elektrotech. 2006, 8, 26–28. [Google Scholar]
- Dudek, G. Neuro—Fuzzy approach to the next Day Load Curve Forecasting. Przegląd Elektrotech. 2011, 87, 61–64. [Google Scholar]
- Rutkowska, D. Neuro—Fuzzy Architectures and Hybrid Learning. Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidlberg, Germany, 2002. [Google Scholar]
- Rutkowski, L. Flexible Neuro-Fuzzy Systems—Structures, Learning and Performance Evaluation; The Kluwer International Series in Engineering and Computer Science; Kluwer Academic Publishers: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2004. [Google Scholar]
- Wilczyński, A. Referat generalny do referatów podsekcji III.1. prognozowanie, planowanie i problemy rozwoju. In Proceedings of the Politechnika Wrocławska. Konferencja Naukowa Aktualne Problemy w Elektroenergetyce, Jurata, Poland, 8–10 June 2011. [Google Scholar]
- Czapaj, R.; Gwóźdź, R.; Przygrodzki, M. Analiza techniczna i fundamentalna a dokładność prognozy cen energii elektrycznej na rynku giełdowym. Przegląd Elektrotechn. 2006, 82, 32–34. [Google Scholar]
- Czapaj, R. Krótkoterminowe Prognozowanie Cen Energii Elektrycznej na Wybranych Polskich Parkietach Obrotu Energią Elektryczną z Uwzględnieniem Walorów Wybranych Europejskich Parkietów Obrotu Energią Elektryczną przy Wykorzystaniu Sieci Neuronowych. Praca Dyplomowa—Studia Podyplomowe, Zaoczne, 1—Roczne. Uniwersytet Ekonomiczny w Krakowie i StatSoft Polska—Czerwiec 2009. 2009. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPOG-0058-0032 (accessed on 16 March 2015).
- Łapczyński, M.; Demski, T. Data Mining—Metody Predykcyjne. Materiały Kursowe StatSoft Polska; Wydawnictwo StatSoft Polska Sp. z o.o.: Kraków, Poland, 2018. [Google Scholar]
- Hayashi, Y.; Iwamoto, S. Long Term Load Forecasting using Improved Recurrent Neural Network. IEEJ Trans. Power Energy 1993, 113, 1203–1212. [Google Scholar] [CrossRef]
- Qing, L.; Boyu, Z.; Li, Q. Impact of Big Data on Electric-power Industry. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis, Beijing, China, 10–12 March 2017. [Google Scholar]
- Helt, P.; Parol, M.; Piotrowski, P. Metody Sztucznej Inteligencji—Przykłady Zastosowań w Elektroenergetyce; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2012. [Google Scholar]
- Poradnik Inżyniera Elektryka Tom 3. Wydanie Drugie Częściowo Zmienione. Warszawa, 1997. Wydawnictwa Naukowo-Techniczne. 1997. Available online: https://www.ksiegarniatechniczna.com.pl/poradnik-inzyniera-elektryka-komplet-3-tomow.html (accessed on 13 November 2018).
- Winkler, W.; Wiszniewski, A. Automatyka Zabezpieczeniowa w Systemach Elektroenergetycznych; Wydawnictwo Naukowo—Techniczne: Warszawa, Poland, 2004. [Google Scholar]
- Vouros, G.A.; Panayiotopoulos, T. (Eds.) Methods and Applications of Artificial Intelligence. In Third Hellenic Conference on AI, SETN 2004 Samos, Greece, May 5–8, 2004, Proceedings; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Zieliński, J.S. Artificial Intelligence Contemporary Applications in Power Systems. In Proceedings of the IV Sympozjum Metody Matematyczne w Elektroenergetyce, Zakopane, Poland, 22–24 October 1998. [Google Scholar]
- Żołneczko, M.; Wilk, A. Data Mining—Metody bez Nauczyciela; Materiały kursowe StatSoft Polska; Wydawnictwo StatSoft Polska Sp. z o.o.: Kraków, Poland, 2018. [Google Scholar]
- Cabena, P.; Hadjinian, P.; Stadler, R.; Verhees, J.; Zanasi, A. Discovering Data Mining. From Concept to Implementation; Prentice-Hall: Hoboken, NJ, USA, 1998. [Google Scholar]
- StatSoft Polska. Zastosowania Statystyki i Data Mining w Badaniach Naukowych i Innowacyjnych; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2014. [Google Scholar]
- Gwóźdź, R.; Czapaj, R. Wpływ Rozwoju PV na KSE; niepubl.—na zlecenie PSE S.A.; PSE Innowacje Sp. z o.o.: Warszawa, Poland, 2020. [Google Scholar]
- Kandel, A.; Last, M.; Bunke, H. Data Mining and Computational Intelligence. Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidlberg, Germany, 2001. [Google Scholar]
- Lula, P. Sztuczne Sieci Neuronowe Jako Narzędzie Analiz Typu Data Mining; Wydawnictwo StatSoft Polska Sp. z o.o.: Kraków, Poland, 2002. [Google Scholar]
- Wątroba, J. Przykład Rozwiązania Zagadnienia Predykcyjnego za Pomocą Technik Data Mining; Wydawnictwo StatSoft Polska Sp. z o.o.: Kraków, Poland, 2002. [Google Scholar]
- Weiss, S.M.; Indurkhya, N. Predictive Data Mining—A Practical Guide; Morgan Kaufmann Publishers: Burlington, MA, USA, 1998. [Google Scholar]
- Demski, T. Przykład Prognozowania z Wykorzystaniem Metod Data Mining (Materiał: STATISTICA 8 Bliżej CIEBIE); Wydawnictwo StatSoft Polska: Kraków, Poland, 2006. [Google Scholar]
- StatSoft Polska. Zastosowania Statystyki i Data Mining w Badaniach Naukowych; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2017. [Google Scholar]
- Sokołowski, A. Data Mining—Automat czy Metoda Naukowa? StatSoft Polska, Akademia Ekonomiczna w Krakowie, Katedra Statystyki, Kraków. 2005. Available online: https://media.statsoft.pl/_old_dnn/downloads/data_mining_automat_czy_metoda.pdf (accessed on 30 July 2012).
- Ratner, B. Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data; Wydawnictwo CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- StatSoft Polska. Zastosowania Statystyki i Data Mining w Badaniach Naukowych; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2016. [Google Scholar]
- StatSoft Polska. Zastosowania Metod Statystycznych w Badaniach Naukowych I; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2000. [Google Scholar]
- StatSoft Polska. Statystyka i Data Mining w Badaniach Naukowych; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2006. [Google Scholar]
- Tadeusiewicz, R. Data Mining Jako Szansa na Relatywnie Tanie Dokonywanie Odkryć Naukowych Poprzez Przekopywanie Pozornie Całkowicie Wyeksploatowanych Danych Empirycznych. StatSoft Polska, Akademia Górniczo—Hutnicza, Laboratorium Biocybernetyki, Kraków. 2006. Available online: https://media.statsoft.pl/_old_dnn/downloads/dm_jako_szansa.pdf (accessed on 1 May 2014).
- StatSoft Polska. Zastosowania Metod Statystycznych w Badaniach Naukowych IV; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2012. [Google Scholar]
- Dudek, G. Prognozowanie Krótkoterminowe Obciążeń Systemów Elektroenergetycznych z Wykorzystaniem Estymatorów Najbliższego Sąsiedztwa. Konferencja Naukowa Aktualne Problemy w Elektroenergetyce—Materiały Konferencyjne, 3–5 czerwca 2009, Jurata. Available online: https://gdudek.el.pcz.pl/files/FuzzyTree_14.pdf (accessed on 15 March 2016).
- StatSoft Polska. Zastosowania Metod Statystycznych w Badaniach Naukowych V; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2016. [Google Scholar]
- StatSoft Polska. Zastosowania Metod Statystycznych w Badaniach Naukowych II; Wydawnictwo StatSoft Polska: Kraków, Poland, 2003. [Google Scholar]
- Wang, Y.; Liu, L.; Pang, X.; Fan, E. Load Forecasting Based on Improved K-means Clustering Algorithm. In Proceedings of the 2018 China International Conference on Electricity Distribution, Tianjin, China, 17–19 September 2018. [Google Scholar]
- Johannesen, N.J.; Kolhe, M.; Goodwin, M. Comparison of Regression Tools for Regional Electric Load Forecasting. In Proceedings of the 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 26–29 June 2018. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. Data Mining, Inference, and Prediction. Stanford 2008; Springer Series in Statistics. The Elements of Statistical Learning, 2nd ed. Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Łapczyński, M.; Lula, P.; Demski, T. Data Mining IIb—Modele i Metody. Materiały Kursowe StatSoft Polska; Wydawnictwo StatSoft Polska Sp. z o.o.: Kraków, Poland, 2006. [Google Scholar]
- Barron, A.R.; Xiao, X. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 67–82. [Google Scholar] [CrossRef]
- Pasztyła, A. Statystyczne Metody Prognozowania Popytu na Rynkach Energii Elektrycznej. Ph.D. Thesis, Uniwersytet Ekonomiczny w Krakowie, Wydział Zarządzania, Katedra Statystyki, Kraków, Poland, 2008. [Google Scholar]
- StatSoft Polska. Praktyczne Wykorzystanie Analizy Danych i Data Mining; Wydawnictwo StatSoft Polska Sp. Z.o.o.: Kraków, Poland, 2008. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Friedman, J.H.; Fast MARS. Technical Report No. 110; Laboratory for Computational Statistics, Department of Statistics, Stanford Linear Accelerator Center, Stanford University: Stanford, CA, USA, 1993. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines; SLAC Pub-460, Rev; Tech Report 102 Rev; Laboratory for Computational Statistics, Department of Statistics. Stanford Linear Accelerator Center, Stanford University: Stanford, CA, USA, 1990. [Google Scholar]
- Bansal, P.; Salling, J. Multivariate Adaptive Regression Splines (MARS). UT ECE. 16-Feb-2013. 2013. Available online: https://uc-r.github.io/mars (accessed on 15 October 2016).
- Demski, T. Data Mining I—Kurs Podstawowy. Materiały Kursowe StatSoft Polska; Wydawnictwo StatSoft Polska: Kraków, Poland, 2006. [Google Scholar]
- Czapaj, R.; Kamiński, J.; Benalcazar, P. Dobór zmiennych objaśniających z wykorzystaniem metody MARSplines na przykładzie prognozowania dobowego zapotrzebowania na moc szczytową 15-minutową w KSE. In Proceedings of the XIV Międzynarodowa Konferencja Naukowa Prognozowanie w Elektroenergetyce PE’18, Podlesice, Poland, 26–28 September 2018. [Google Scholar]
- Czapaj, R.; Kamiński, J.; Benalcazar, P. Dobór zmiennych objaśniających z wykorzystaniem metody MARSplines na przykładzie prognozowania dobowego zapotrzebowania na moc szczytową 15-minutową w KSE. Przegląd Elektrotech. 2019, 95, 9–12. [Google Scholar] [CrossRef]
- Czapaj, R.; Ponikowska, T.; Kozakiewicz, M. Optymalizacja Metodyki Prognozowania oraz Interfejsu Użytkownika w Narzędziu Informatycznym Służącym do Prognozowania Strat Sieciowych (Zadanie w Ramach Projektu Poszukiwanie i Proponowanie Rozwiązań Innowacyjnych Zmierzających do Zapewnienia Bezpiecznej i Ekonomicznej Pracy KSE z Uwzględnieniem Bieżących Potrzeb PSE S.A.); niepubl.—na zlecenie PSE S.A.; PSE Innowacje Sp. z o.o.: Warszawa, Poland, 2020. [Google Scholar]
- Czapaj, R.; Kamiński, J.; Benalcazar, P. Prognozowanie krótkoterminowe zapotrzebowania na energię elektryczną w KSE z wykorzystaniem metody MARSplines. Przegląd Elektrotech. 2019, 95, 133–136. [Google Scholar] [CrossRef]
- Pasztyła, A. Data Mining IIa—Metody bez Nauczyciela. Materiały Kursowe StatSoft Polska; Wydawnictwo StatSoft Polska Sp. z o.o.: Kraków, Poland, 2006. [Google Scholar]
- Aman, S.; Chelmis, C.; Prasanna, V. Addressing Data Veracity in Big Data Applications. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014. [Google Scholar]
- Sagiroglu, S.; Sinanc, D. Big Data: A Review. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013. [Google Scholar]
- Williams, J.W.; Aggour, K.S.; Interrante, J.; McHugh, J.; Pool, E. Bridging High Velocity and High Volume Industrial Big Data Through Distributed In—Memory Storage & Analytics. In Proceedings of the 2014 IEEE International Conference on Big Data, Washington, DC, USA, 27–30 October 2014. [Google Scholar]
- Yindong, Y.; Zhongqin, B. Advances and Future Challenges in Electric Power Big Data. In Proceedings of the 2014 Second International Conference on Advanced Cloud and Big Data, Huangshan, China, 20–22 November 2014. [Google Scholar]
- Wang, Y.F.; Deng, M.H.; Bao, Y.K.; Zhang, H.; Chen, J.Y.; Qian, J.; Guo, C.X. Power System Disaster-Mitigating Dispatch Platform Based on Big Data. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014. [Google Scholar]
- Wang, X.Z.; Zhou, J.; Huang, J.L.; Bi, X.L.; Ge, Z.Q. A Multilevel Deep Learning Method for Big Data Analysis and Emergency Management of Power System. In Proceedings of the 2016 IEEE International Conference on Big Data Analysis (ICBDA), Hangzhou, China, 12–14 March 2016. [Google Scholar]
- Shi, H.; Xu, M.; Li, R. Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN. IEEE Trans. Smart Grid 2017, 9, 5271–5280. [Google Scholar] [CrossRef]
- Dong, X.; Qian, L.; Huang, L. A CNN Based Bagging Learning Approach to Short-Term Load Forecasting in Smart Grid. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017. [Google Scholar]
- Hao, J.; Gu, H.; Wang, R.; Deng, M.; Liu, Y.; Yang, D.; Lei, J.; Huang, Z. Short-term Power Load Forecasting for Larger Consumer based on TensorFlow Deep Learning Framework and Clustering-regression Model. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018. [Google Scholar]
- Wang, X.; Zhao, T.; Liu, H.; He, R. Power Consumption Predicting and Anomaly Detection Based on Long Short—Term Memory Neural Network. In Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analytics, Chengdu, China, 12–15 April 2019. [Google Scholar]
- Geron, A. Uczenie Maszynowe z Użyciem Scikit-Learn i Tensorflow—Pojęcia, Techniki i Narzędzia Służące Do Tworzenia Inteligentnych Systemów; Wydawnictwo Helion/O’Reilly: Gliwice, Poland, 2018. [Google Scholar]
- Chollet, F.; Allaire, J.J. Deep Learning—Praca z Językiem R i Biblioteką Keras; Wydawnictwo Helion: Gliwice, Poland, 2019. [Google Scholar]
- Kollia, L.; Kollias, S. A Deep Learning Approach for Load Demand Forecasting of Power Systems. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018. [Google Scholar]
- Zhan, J.; Huang, J.; Niu, L.; Peng, X.; Deng, D.; Cheng, S. Study of the Key Technologies of Electric Power Big Data and its Application Prospects in Smart Grid. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 7–10 December 2014. [Google Scholar]
- Hu, L.; Liu, K.Y.; Lin, Z.; Diao, Y.; Sheng, W. An Abnormal State Detection Method for Power Distribution Network Based on Big Data Technology. In Proceedings of the 2018 International Conference on Cyber—Enabled Distributed Computing and Knowledge Discovery, China, Beijing, 18–20 October 2018. [Google Scholar]
- Kamiński, J. Metody modelowania równowagi rynków energii elektrycznej. Rynek Energii. Str. 2010, 3, 127–136. [Google Scholar]
- Kamiński, J. Założenia metodyczne do budowy modelu równowagi rynku energii elektrycznej dla warunków Polski. Energetyka. Str. 2011, 1, 10–16. [Google Scholar]
- Correa, E.; Inga, E.; Inga, J.; Hincapié, R. Electrical Consumption Pattern base on Meter Data Management System using Big Data Techniques. In Proceedings of the 2017 International Conference on Information Systems and Computer Science, Quito, Ecuador, 23–25 November 2017. [Google Scholar]
- Lu, Y.; Zhang, T.; Zeng, Z.; Loo, J. An Improved RBF Neural Network for Short-Term Load Forecast in Smart Grids. In Proceedings of the 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, China, 14–16 December 2016. [Google Scholar]
- Song, M.; Jia, L. Big Data Mining Method of Thermal Power Based on Spark and Optimization Guidance. In Proceedings of the 2018 IEEE 7th Data Driven Control and Learning Systems Conference, Enshi, China, 25–27 May 2018. [Google Scholar]
- Ku, T.I.; Park, W.K.; Choi, H. Energy Peak Reduction Mechanism with Prediction of Demand and PV Generation on Big Data. In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing, Shanghai, China, 15–17 January 2018. [Google Scholar]
- Yuan, Q.; Zhou, K.; Lu, W.; Yao, J. Big Data Driven Optimal Sizing of Stand-alone Photovoltaic Energy Systems. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018. [Google Scholar]
- Liu, N.; Ma, L.; Liu, X.; Yu, H.; Tan, H.; Zhao, Y.; Guodong, L. Research on Key Issues of Data Integration Technology in Electric Power System in Big Data Environment. In Proceedings of the 2017 9th IEEE International Conference on Communication Software and Networks, Guangzhou, China, 6–8 May 2017. [Google Scholar]
- Liu, Z.; Zou, Y. Research on Distribution Network Operation and Control Technology Based on Big Data Analysis. In Proceedings of the 2018 China International Conference on Electricity Distribution, Tianjin, China, 17–19 September 2018. [Google Scholar]
- Pei, Z.; Wu, X.; Wang, X.; Bi, S. Short—Term Load Forecasting Based on Big Data Technologies. CSEE J. Power Energy Syst. 2015, 1, 59–67. [Google Scholar]
- Shady, S.R.; Haitham, A.-R. Amira Big Data, Better Energy Management and Control Decisions for Distribution Systems in Smart Grid. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016. [Google Scholar]
- Huang, X.; Huang, A.; Huang, H.; Ouyang, W.; Zhu, Y. Economic Operation Platform for Power Grid Company. In Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analytics, Chengdu, China, 12–15 April 2019. [Google Scholar]
- Jin, L.; Li, H.; Xu, Z.; Ting, W.; Jia, W.; Su, D. Research on Wide-Area Distributed Power Quality Data Fusion Technology of Power Grid. In Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analytics, Chengdu, China, 12–15 April 2019. [Google Scholar]
- Gu, X.; Xiong, B. Analysis of Power User Behavior Based on Big Data Technology: A Review. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018. [Google Scholar]
- Vijaya, T.; Vasirani, M.; Humeau, S.; Aberer, K. Cluster-Based Aggregate Forecasting for Residential Electricity Demand using Smart Meter Data. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015. [Google Scholar]
- Wu, P.; Tan, J. The Design of Distributed Power Big Data Analysis Framework and its Application in Residential Electricity Analysis. In Proceedings of the 2018 Sixth International Conference on Advanced Cloud and Big Data, Lanzhou, China, 12–15 August 2018. [Google Scholar]
- Dudek, G. Analiza podobieństwa obrazów sekwencji szeregów czasowych obciążeń elektroenergetycznych. In Proceedings of the IX Międzynarodowa Konferencja Naukowa Prognozowanie w Elektroenergetyce, Wisła, Poland, 17–19 September 2008. [Google Scholar]
- Dudek, G. Analiza podobieństwa obrazów sekwencji szeregów czasowych obciążeń elektroenergetycznych. Przegląd Elektrotech. 2009, 85, 149–152. [Google Scholar]
- Dudek, G. Similarity-Based Approaches to Short-Term Load Forecasting. Electrical Department, Czestochowa University of Technology, Poland. Applied Soft Computing 37:277–287. December. 2015. Available online: https://gdudek.el.pcz.pl/files/STLF_similarity10.pdf (accessed on 16 March 2016).
- Liao, X.; Cao, N.; Ma, L.; Kang, X. Research on Short-term Load Forecasting Using XGBoost Based on Similar Days. In Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 12–13 January 2019. [Google Scholar]
- Mu, Q.; Wu, Y.; Pan, X.; Huang, L. Short-term Load Forecasting Using Improved Similar Days Method. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010. [Google Scholar]
- Keitsch, K.; Bruckner, T. SAWing on Short Term Load Forecasting Errors: Increasing the Accuracy with Self AdaptiveWeighting. In Proceedings of the 2016 IEEE Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne, Australia, 28 November–28 December 2016. [Google Scholar]
- Saber, A.Y.; Alam, R. Short Term Load Forecasting using Multiple Linear Regression for Big Data. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017. [Google Scholar]
- Vatra, D.F.; Poida, D.A.; Stanescu, D.C. Data System for The Monitoring of Power Quality in The Transmission Substations Supplying Big Consumers. In Proceedings of the 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain, 9–11 October 2007. [Google Scholar]
- Huang, J.; Niu, L.; Zhan, J.; Peng, X.; Bai, J.; Cheng, S. Technical Aspects and Case Study of Big Data based Condition Monitoring of Power Apparatuses. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 7–10 December 2014. [Google Scholar]
- Sowiński, J. Temperatura powietrza jako dodatkowa zmienna egzogeniczna w krótkoterminowym prognozowaniu modelem ANFIS obciążeń w podsystemie elektroenergetycznym. Przegląd Elektrotech. 2019, 97, 178–181. [Google Scholar] [CrossRef]
- Sowiński, J.; Szydłowski, M. Forecast of Electricity Supply Using Adaptive Neuro—Fuzzy Inference System. In Proceedings of the 18th International Scientific Conference on Electric Power Engineering, Kouty nad Desnou, Czech Republic, 17–19 May 2017. [Google Scholar]
- Gabaldón, A.; Ruiz-Abellón, M.C.; Fernández-Jiménez, L.A. Short-Term Load Forecasting 2019; MDPI: Basel, Switzerland, 2020. [Google Scholar]
- Upadhaya, D.; Thakur, R.; Singh, N.K. A Systematic review on the Methods of Short Term Load Forecasting. In Proceedings of the 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 18–19 October 2019. [Google Scholar]
- Harrison, G. NoSQL, NewSQL i BigData—Bazy Danych Następnej Generacji; Wydawnictwo Helion: Gliwice, Poland, 2019. [Google Scholar]
No. | Authors/Title/Publishing House | Year | Analysis Scope | Country | Method, Model | Effectiveness | Model No. | |||
---|---|---|---|---|---|---|---|---|---|---|
- | Years | - | - | Error, % | - | |||||
1. | Al-Fuhaid A.S. et al. Neuro-Short-Term Load Forecast of the Power System in Kuwait Elsevier (21:215-219) [18] | 1997 | 1994 | Kuwait | ANN(ea)—Artificial neural network | MAPE(ea) | 1.84 | 4.84 | 1 | |
2. | Almeshaiei E., Soltan H. A Methodology for Electric Power Load Forecasting Alexandria Engineering Journal (50) [19] | 2011 | 2006–2008 | Kuwait | MA(ea7,30)—Moving Average (7, 30) | MAPE(ea) | 3.84 | 2 | ||
3. | Al-Shobaki S., Mohsen M. Modeling and Forecasting of Electrical Power Demands for Capacity Planning Elsevier Energy Conversion and Management (49) [20] | 2008 | 2002–2007 | Jordan | ARIMA(ea) | MAPE(ea) | 5.25 | 3 | ||
4. | Badran S.M., Abouelatta O.B. Forecasting Electrical Load using ANN Combined with Multiple Regression Method The Research Bulletin of Jordan ACM II(II) [21] | 2013 | 1988–2006 | Saudi Arabia | MR—Multiple Regression | MAPE | 11.58 | 14.35 | 4 | |
ANN—Multiple Regression | MAPE | 2.44 | 8.04 | 5 | ||||||
5. | Brodowski S. et al. A Hybrid System for Forecasting 24-h Power Load Profile for Polish Electric Grid Elsevier B.V. Applied Soft Computing (58) [22] | 2017 | 2013, 2015 | Poland (NPS) | HA + MR—Hierarchical Approximator + Multiple Regression | MAPE | 1.08 | 2.26 | 6 | |
6. | Buitrago J., Asfour S. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs Energies 10(40) [23] | 2017 | 2005–2015 | USA (New England) | ANN—Artificial Neural Network | MAPE | 0.85 | 7 | ||
7. | Ceperic E., Ceperic V. A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines IEEE Transactions on Power Systems (1) [24] | 2013 | 2006 | USA | ANN—Artificial Neural Network | MAPE | 1.50 | 3.72 | 8 | |
SDBWNN—Similar Day—Based Wavelet Neural Network | MAPE | 1.26 | 2.70 | 9 | ||||||
SASVR—Seasonality—Adjusted, Support Vector Regression | MAPE | 0.93 | 1.86 | 10 | ||||||
8. | Chahkoutahi F., Khashei M. A Seasonal Direct Optimal Hybrid Model of Computational Intelligence and Soft Computing Techniques for Electricity Load Forecasting Energy (140) [25] | 2017 | 2011.05.02–2011.07.03 | Australia | ARIMA | MAPE | 0.76 | 1.07 | 11 | |
ANN(MLP)—Artificial Neural Network (Multilayer Perceptron) | MAPE | 0.72 | 1.23 | 12 | ||||||
ANFIS—Adaptive Neuro Fuzzy Inference System | MAPE | 0.83 | 0.95 | 13 | ||||||
DOPH—Direct Optimum Parallel Hybrid | MAPE | 0.58 | 0.71 | 14 | ||||||
9. | Chapagain K., Kittipiyakul S. Short-Term Electricity Load Forecasting Model and Bayesian Estimation for Thailand Data MATEC Web of Conferences (55) [26] | 2016 | 2013–2015 | Thailand | MR—Multiple Regression | MAPE | 1.75 | 33.45 | 15 | |
MR(Gibbs)—Multiple Regression (Gibbs Sampling) | MAPE | 0.85 | 23.06 | 16 | ||||||
10. | Chen H. et al. ANN-Based Short-Term Load Forecasting in Electricity Markets University of Waterloo, Department of Electrical & Computer Engineering [27] | 2001 | 1999 | Canada | ANN—Artificial Neural Network | MAPE | 0.48 | 3.00 | 17 | |
11. | Chheepa T.K., Manglani T. A Critical Review on Employed Techniques for Short Term Load Forecasting IRJET 04(06) [28] | 2017 | 1996–1997, 2000 | Iran | ARIMA | MAPE | 1.48 | 1.99 | 18 | |
12. | Clements A.A. et al. Forecasting Day-Ahead Electricity Load Using a Multiple Equation Time Series Approach NCER Working Paper Series 103(5) [29] | 2015 | 1999.07.12–2013.11.27 | Australia | ARIMA | MAPE | 1.36 | 2.89 | 19 | |
13. | Czapaj R. Typowanie zmiennych objaśniających przy wykorzystaniu zautomatyzowanych metod statystycznych jako sposób optymalizacji wyboru metody estymacji szczytowego dobowego obciążenia KSE Przegląd Elektrotechniczny 4(93) [30] | 2016 | 2010–2014 | Poland (NPS) | MARSplines | MAPE | 1.86 | 6.99 | 20 | |
C&RT—Classification and Regression Trees | MAPE | 2.57 | 7.18 | 21 | ||||||
C&RT—Classification and Regression Trees | MAPE | 2.56 | 6.77 | 22 | ||||||
Chi2—Automatic interaction detector using Chi2 | MAPE | 4.06 | 7.33 | 23 | ||||||
CHAID—Chi2 Automatic Interaction Detector | MAPE | 3.69 | 9.40 | 24 | ||||||
14. | Czapaj R., Kamiński J., Benalcazar P. Dobór zmiennych objaśniających z wykorzystaniem metody MARSplines Politechnika Częstochowska, XIV Konferencja PE [31] | 2018 | 2009–2014 | Poland (NPS) | MARSplines | MAPE | 1.86 | 6.99 | 25 | |
15. | Czapaj R., Kamiński J., Benalcazar P. Prognozowanie krótkoterminowe z wykorzystaniem metody MARSplines Politechnika Częstochowska, XIV Konferencja PE [32] | 2018 | 2009–2014 | Poland (NPS) | MARSplines | MAPE | 3.36 | 6.04 | 26 | |
MARSplines(ea) | MAPE(ea) | 6.57 | 27 | |||||||
16. | Dąsal K. Dobór zmiennych wejściowych do Modelu Rozkładu Kanonicznego Politechnika Częstochowska, VI Konferencja PE [33] | 2002 | 1993–1995 | Poland (NPS) | MRK(Mo-Fr) —Canonical Vector Decomposition Method from Monday till Friday | MAPE(Mo-Fr) | 0.64 | 9.79 | 28 | |
17. | Dudek G. Short-Term Load Forecasting Based on Kernel Conditional Density Estimation Przegląd Elektrotechniczny 8(86) [34] | 2010 | 2002–2006 | Poland (NPS) | SFS(5 years)—Sequential Forward Selection Methods | MAPE | 1.84 | 29 | ||
SBS(5 years)—Sequential Backward Selection Methods | MAPE | 1.77 | 30 | |||||||
NS(5 years)—Nearest Neighbors | MAPE | 1.94 | 31 | |||||||
ANN(5 years)—Artificial Neural Network | MAPE | 2.02 | 32 | |||||||
FE(5 years)—Fuzzy Estimators | MAPE | 1.76 | 33 | |||||||
1997–2000 | SFS(4 years)—Sequential Forward Selection Methods | MAPE | 2.19 | 34 | ||||||
SBS(4 years)—Sequential Backward Selection Methods | MAPE | 2.06 | 35 | |||||||
NS(4 years)—Nearest Neighbors | MAPE | 2.55 | 36 | |||||||
ANN(4 years)—Artificial Neural Network | MAPE | 2.24 | 37 | |||||||
FE(4 years)—Fuzzy Estimators | MAPE | 2.14 | 38 | |||||||
18. | Dudek G., Janicki M. Nearest Neighbor Model with Weather Inputs for Pattern-based Electricity Demand Forecasting Przegląd Elektrotechniczny 3(93) [35] | 2017 | 2011–2014 | Poland (NPS) | NNWISA(working days) —Nearest Neighbors with Weather Inputs for Similarity Analysis | MAPE (working days) | 1.55 | 1.67 | 39 | |
Belgium | MAPE (working days) | 2.82 | 2.88 | 40 | ||||||
New England | MAPE (working days) | 2.41 | 3.26 | 41 | ||||||
USA | MAPE (working days) | 3.43 | 4.82 | 42 | ||||||
2011–2014 | Poland (NPS) | NNWISA(weekends) —Nearest Neighbors with Weather Inputs for Similarity Analysis | MAPE(weekends) | 1.75 | 1.76 | 43 | ||||
Belgium | MAPE(weekends) | 3.02 | 3.12 | 44 | ||||||
New England | MAPE(weekends) | 2.92 | 3.16 | 45 | ||||||
USA | MAPE(weekends) | 4.31 | 4.99 | 46 | ||||||
2011–2014 | Poland (NPS) | NNWISA(Holidays) —Nearest Neighbors with Weather Inputs for Similarity Analysis | MAPE(Holidays) | 4.36 | 16.17 | 47 | ||||
Belgium | MAPE(Holidays) | 4.05 | 12.61 | 48 | ||||||
New England | MAPE(Holidays) | 6.35 | 7.03 | 49 | ||||||
USA | MAPE(Holidays) | 6.05 | 7.62 | 50 | ||||||
19. | Dudek G. Pattern-Based Local Linear Regression Models for Short-Term Load Forecasting Elsevier, Electric Power System Research (130) [36] | 2016 | 2002–2004 | Poland (NPS) | MR(January)—Multiple Regression | MAPE(January) | 2.37 | 51 | ||
SR(January)—Stepwise Regression | MAPE(January) | 1.52 | 52 | |||||||
RR(January)—Ridge Regression | MAPE(January) | 1.59 | 53 | |||||||
Lasso(January)—Least Absolute Selection Regression and the Constriction Operator | MAPE(January) | 1.51 | 54 | |||||||
PCR(January)—Principal Component Regression | MAPE(January) | 1.36 | 55 | |||||||
PLSR(January)—Partial Least Squares Regression | MAPE(January) | 1.18 | 56 | |||||||
MR(July)—Multiple Regression | MAPE(July) | 2.63 | 57 | |||||||
SR(July)—Stepwise Regression | MAPE(July) | 1.14 | 58 | |||||||
RR(July)—Ridge Regression | MAPE(July) | 1.23 | 59 | |||||||
Lasso(July)—Least Absolute Selection Regression and the Constriction Operator | MAPE(July) | 1.06 | 60 | |||||||
PCR(July)—Principal Component Regression | MAP(July) | 0.94 | 61 | |||||||
PLSR(July)—Partial Least Squares Regression | MAPE(July) | 1.00 | 62 | |||||||
2002–2004 | Poland (NPS) | PCR—Principal Component Regression | MAPE | 1.35 | 63 | |||||
PLSR—Partial Least Squares Regression | MAPE | 1.34 | 64 | |||||||
ARIMA | MAPE | 1.82 | 65 | |||||||
ES—Exponential Smoothing | MAPE | 1.66 | 66 | |||||||
ANN(MLP)—Artificial Neural Network (Multilayer Perceptron) | MAPE | 1.44 | 67 | |||||||
NWE—Nadaraya—Watson Estimator | MAPE | 1.30 | 38 | |||||||
NM—Naive Method | MAPE | 3.43 | 39 | |||||||
2007–2009 | France | PCR—Principal Component Regression | MAPE | 1.71 | 70 | |||||
PLSR—Partial Least Squares Regression | MAPE | 1.57 | 71 | |||||||
ARIMA | MAPE | 2.32 | 72 | |||||||
ES—Exponential Smoothing | MAPE | 2.10 | 73 | |||||||
ANN(MLP)—Artificial Neural Network (Multilayer Perceptron) | MAPE | 1.64 | 74 | |||||||
NWE—Nadaraya—Watson Estimator | MAPE | 1.66 | 75 | |||||||
NM—Naive Method | MAPE | 5.05 | 76 | |||||||
2007–2009 | Great Britain | PCR—Principal Component Regression | MAPE | 1.60 | 77 | |||||
PLSR—Partial Least Squares Regression | MAPE | 1.54 | 78 | |||||||
ARIMA | MAPE | 2.02 | 79 | |||||||
ES—Exponential Smoothing | MAPE | 1.85 | 80 | |||||||
ANN(MLP)—Artificial Neural Network (Multilayer Perceptron) | MAPE | 1.65 | 81 | |||||||
NWE—Nadaraya—Watson Estimator | MAPE | 1.55 | 82 | |||||||
NM—Naive Method | MAPE | 3.52 | 83 | |||||||
2006–2008 | Australia | PCR—Principal Component Regression | MAPE | 3.00 | 84 | |||||
PLSR—Partial Least Squares Regression | MAPE | 2.83 | 85 | |||||||
ARIMA | MAPE | 3.67 | 86 | |||||||
ES—Exponential Smoothing | MAPE | 3.52 | 87 | |||||||
ANN(MLP)—Artificial Neural Network (Multilayer Perceptron) | MAPE | 2.92 | 88 | |||||||
NWE—Nadaraya–Watson Estimator | MAPE | 2.82 | 89 | |||||||
NM—Naive Method | MAPE | 4.88 | 90 | |||||||
20. | Dudek G. Drzewa regresyjne i lasy losowe jako narzędzia predykcji szeregów czasowych z wahaniami sezonowymi Politechnika Częstochowska [37] | 2016 | 2002–2004 | Poland (NPS) | RF(January)—Random Forest | MAPE(January) | 1.42 | 91 | ||
C&RT(January)—Classification and Regression Trees | MAPE(January) | 1.70 | 92 | |||||||
C&RTR(January)—Fuzzy Classification and Regression Trees | MAPE(January) | 1.62 | 93 | |||||||
ARIMA(January) | MAPE(January) | 2.64 | 94 | |||||||
ES(January)—Exponential Smoothing | MAPE(January) | 2.35 | 95 | |||||||
ANN(January)—Artificial Neural Network | MAPE(January) | 1.32 | 96 | |||||||
NM(January)—Naive Method | MAPE(January) | 6.37 | 97 | |||||||
RF(July)—Random Forest | MAPE(July) | 0.92 | 98 | |||||||
C&RT(July)—Classification and Regression Trees | MAPE(July) | 1.16 | 99 | |||||||
C&RTR(July)—Fuzzy Classification and Regression Trees | MAPE(July) | 1.13 | 100 | |||||||
ARIMA(July) | MAPE(July) | 1.21 | 101 | |||||||
ES(July)—Exponential Smoothing | MAPE(July) | 1.19 | 102 | |||||||
ANN(July)—Artificial Neural Network | MAPE(July) | 0.97 | 103 | |||||||
NM(July)—Naive Method | MAPE(July) | 1.29 | 104 | |||||||
21. | Esener I.I., Yuskel T., Kurban M. Short-Term Load Forecasting Without Meteorological Data Using AI-Based Structures Turkish Journal of Electrical Engineering & Computer Sciences (23) [38] | 2015 | 2009 | Turkey | ANN—Artificial Neural Network | MAPE | 3.67 | 105 | ||
WM+ANN—WM—Wavelet Method + ANN—Artificial Neural Network | MAPE | 3.73 | 106 | |||||||
WM+ANN(RBF)—WM—Wavelet Method + ANN—Artificial Neural Network (Radial Basis Functions) | MAPE | 2.89 | 107 | |||||||
ED—Empirical Decomposition | MAPE | 3.52 | 108 | |||||||
2010 | ANN—Artificial Neural Network | MAPE | 3.81 | 109 | ||||||
WM+ANN—WM—Wavelet Method + ANN—Artificial Neural Network | MAPE | 4.18 | 110 | |||||||
WM+ANN(RBF)—WM—Wavelet Method + ANN—Artificial Neural Network (Radial Basis Functions) | MAPE | 2.99 | 111 | |||||||
ED—Empirical Decomposition | MAPE | 3.63 | 112 | |||||||
22. | Fan S. Short-Term Load Forecasting Based on a Semi-Parametric Additive Model IEEE Transactions on Power Systems [39] | 2010 | 1997–2009 (training) 2009.01.01–2009.01.31 (test) | Australia | SPAM—Semi-Parametric Additive Model | MAPE | 1.41 | 2.37 | 113 | |
ANN—Artificial Neural Network | MAPE | 1.82 | 3.90 | 114 | ||||||
SPAM+ANN—Hybrid Model (Semi-Parametric Additive Model + Artificial Neural Network) | MAPE | 1.58 | 2.79 | 115 | ||||||
23. | Farahat M.A. Short Term Load Forecasting Using Neural Networks and Particle Swarm Optimization Journal of Electrical Engineering [40] | 2018 | 2011.07.01–2011.08.10 (training) 2011.08.11–2011.08.17 (test) | Egypt | ANN(BP)—Artificial Neural Network (Back Propagation Training) | MAPE | 4.60 | 116 | ||
ANN(BP)+PSO –ANN(BP) —Artificial Neural Network (Back Propagation Training) + PSO—Particle Swarm Optimization | MAPE | 1.90 | 117 | |||||||
24. | Gorwar M. Short Term Load Forecasting Using Time Series Analysis: A Case Study for Karnataka, India ResearchGate, IJESIT Conference [41] | 2012 | 2011–2012 | India | AR(ea)—Autoregression | MAPE | 13.03 | 118 | ||
ARMA(ea) | MAPE | 11.73 | 119 | |||||||
ARIMA(ea) | MAPE | 6.15 | 120 | |||||||
25. | Hassan S., Khosravi A., Jaafar J. Examining Performance of Aggregation Algorithms for Neural Network-Based Electricity Demand Forecasting ScienceDirect, Electrical Power and Energy Systems (64) [42] | 2015 | 2011 (30-min Intervals) | Malaysia, Australia, Pakistan | ANN(I)—Artificial Neural Network (Integration) | MAPE(I 30 min.) | 7.16 | 121 | ||
ANN(TI)—Sztuczna sieć neuronowa (Trimmed Integration) | MAPE(I 30 min.) | 10.13 | 122 | |||||||
ANN(BA)—Artificial Neural Network (Bayesian Averaging) | MAPE(I 30 min.) | 4.34 | 123 | |||||||
NM—Metoda naiwna | MAPE(I 30 min.) | 6.41 | 124 | |||||||
26. | He W. Deep Neural Network Based Load Forecast Computer Modelling & New Technologies 18(3) [43] | 2014 | 2000.02.10–2012.11.30 | China | ANN—Artificial Neural Network | MAPE | 1.90 | 2.08 | 125 | |
27. | Hong T., Wang P. Fuzzy Interaction Regression for Short Term Load Forecasting University of North Carolina at Charlotte 13(1) [44] | 2014 | 2005–2007 | USA | FRI(ea)—Fuzzy Regression without Interaction | MAPE(ea) | 14.21 | 126 | ||
FRICV(ea)—Fuzzy Regression without Interaction with Categorical Variables | MAPE(ea) | 5.16 | 127 | |||||||
FRI(ea) + MR—FRI(ea)—Fuzzy Regression without Interaction + MR—Multiple Regression | MAPE(ea) | 4.63 | 128 | |||||||
FRI(ea)+TV—FRI(ea)—Fuzzy Regression without Interaction + TV—Temperature Variables | MAPE(ea) | 3.68 | 129 | |||||||
28. | Janicki M. Temperature Correction Method for Pattern Similarity-Based Short-term Electricity Demand Forecasting Models Przegląd Elektrotechniczny 3(93) [45] | 2017 | 2013–2014 | USA | IS+TC(USA 2013)—IS—Image Similarities + TC—Temperature Correction (USA 2013) | MAPE | 4.50 | 130 | ||
USA | NM(USA 2013)—Naive Method (USA 2013) | MAPE | 10.78 | 131 | ||||||
USA | IS+TC(USA 2014)—IS—Image Similarities + TC—Temperature Correction (USA 2014) | MAPE | 4.86 | 132 | ||||||
USA | NM(USA 2014)—Naive Method (USA 2014) | MAPE | 10.94 | 133 | ||||||
Belgium | IS+TC(BEL 2013)—IS—Image Similarities + TC—Temperature Correction (Belgium 2013) | MAPE | 3.80 | 134 | ||||||
Belgium | NM (BEL 2013)—Naive Method (Belgium 2013) | MAPE | 8.54 | 135 | ||||||
Belgium | IS+TC(BEL 2014)—IS—Image Similarities + TC—Temperature Correction (Belgium 2014) | MAPE | 3.66 | 136 | ||||||
Belgium | NM(BEL 2014)—Naive Method (Belgium 2014) | MAPE | 9.47 | 137 | ||||||
29. | Kheirkhah A. et al. Improved Estimation of Electricity Demand Function by Using of Artificial Neural Network, Principal Component Analysis and Data Envelopment Analysis Elsevier Ltd. Computers & Industrial Engineering (64) [46] | 2013 | 1992.04.01–2003.02.28 | Iran, Ireland Turkey | GA—Genetic Algorithm | MAPE | 0.14 | 138 | ||
FR—Fuzzy Regression | MAPE | 0.08 | 139 | |||||||
ANN—Artificial Neural Network | MAPE | 0.16 | 140 | |||||||
ANFIS—Adaptive Neuro Fuzzy Inference System | MAPE | 0.15 | 141 | |||||||
DEA—Data Envelopment Analysis | MAPE | 0.01 | 142 | |||||||
30. | Kolcun M., Holka L. Daily Load Diagram Prediction of Eastern Slovakia Politechnika Częstochowska, VI Konferencja PE [47] | 2002 | 1997–1998 | Slovakia | ANN(Koh)—Kohonen’s Artificial Neural Network | MAPE | 3.50 | 143 | ||
31. | Lin Y. An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting Energies 10(1186) [48] | 2017 | 2010.08.01–2011.07.31 | Australia | EML—Extreme Machine Learning | MAPE | 0.83 | 144 | ||
EMLDE—Extreme Machine Learning (optimized by) Differential Evolution | MAPE | 0.77 | 145 | |||||||
ARIMA | MAPE | 0.73 | 146 | |||||||
WTWTMABC—Wavelet Transform— Wavelet Transform—Modified Artificial Bee Colony—Extreme Machine Learning | MAPE | 0.59 | 147 | |||||||
EMDDEEML—Empirical Mode Decomposition—Differential Evolution – Extreme Machine Learning | MAPE | 0.39 | 148 | |||||||
VMD—Variational Mode Decomposition | MAPE | 0.30 | 149 | |||||||
32. | Liu N., Babushkin V., Afshari A. Short-Term Forecasting of Temperature Driven Electricity Load Using Time Series and Neural Network Model Journal of Clean Energy Technologies 2(4) [49] | 2014 | 2010.01.01–2011.06.30 | United Arab Emirates | SARIMAX | MAPE | 1.58 | 150 | ||
ANN—Artificial Neural Network | MAPE | 2.29 | 151 | |||||||
33. | Magnano L., Boland J.W. Generation of Synthetic Sequences of Electricity Demand: Application in South Australia Elsevier Ltd. Energy (32) [50] | 2006 | 2000–2001 (Summer Time) | Australia | ARMA(Summer Time) | MAPE (Summer Time) | 2.40 | 152 | ||
34. | Nadtoka I.I., Al-Zihery B.M. Mathematical Modelling and Short-Term Forecasting of Electricity Consumption of the Power System, with Due Account of Air Temperature and Natural Illumination, Based on Support Vector machine and Particle Swarm Elsevier Ltd. Procedia Engineering (129) [51] | 2015 | 2009–2012 | Iraq | SVM+PSO—SVM – Support Vector Machines + PSO – Particle Swarm Optimization (including UV) | 2011.05.11. | MAPE(UV; May 2011) | 2.65 | 153 | |
2011.08.31. | MAPE(UV; August 2011) | 1.23 | 154 | |||||||
2011.11.30. | MAPE(UV; November 2011) | 2.13 | 155 | |||||||
2012.01.26. | MAPE(UV; January 2012) | 1.73 | 156 | |||||||
SVM+PSO—SVM – Support Vector Machines + PSO – Particle Swarm Optimization (including temperature) | 2011.05.11. | MAPE(Temp.; May 2011) | 2.60 | 157 | ||||||
2011.08.31. | MAPE(Temp.; August 2011) | 1.37 | 158 | |||||||
2011.11.30. | MAPE(Temp.; November 2011) | 1.94 | 159 | |||||||
2012.01.26. | MAPE(Temp.; January 2012) | 1.90 | 160 | |||||||
SVM+PSO—SVM – Support Vector Machines + PSO – Particle Swarm Optimization (including UV & Temperature) | 2011.05.11. | MAPE(UV; Temp.; May 2011) | 2.26 | 161 | ||||||
2011.08.31. | MAPE(UV; Temp.; August 2011) | 1.41 | 162 | |||||||
2011.11.30. | MAPE(UV; Temp.; November 2011) | 1.61 | 163 | |||||||
2012.01.26. | MAPE(UV; Temp.; January 2012) | 1.58 | 164 | |||||||
35. | Narayan A. Long Short Term Memory Networks for Short-Term Electric Load Forecasting IEEE International Conference on Systems, Man, and Cybernetics [52] | 2017 | 2006–2016 | Canada | ANN(January)—Artificial Neural Network | MAPE (January) | 4.60 | 165 | ||
ARIMA(May) | MAPE (May) | 5.70 | 166 | |||||||
ANN-LSTM-RNN(September)— Long—Short—Term Memories—Recurrent Neural Network | MAPE (September) | 4.40 | 167 | |||||||
ANN(sty.)—Artificial Neural Network | MAPE (January) | 6.30 | 168 | |||||||
ARIMA(May) | MAPE (May) | 8.20 | 169 | |||||||
ANN—LSTM—RNN(September)— Long—Short—Term Memories—Recurrent Neural Network | MAPE (September) | 5.90 | 170 | |||||||
ANN(January)—Sztuczna sieć neuronowa | MAPE (January) | 3.80 | 171 | |||||||
ARIMA(May) | MAPE (May) | 3.90 | 172 | |||||||
ANN-LSTM-RNN(September)— Long—Short—Term Memories—Recurrent Neural Network | MAPE (September) | 3.80 | 173 | |||||||
36. | Nowicka-Zagrajek J., Weron R. Modeling Electricity Loads in California: ARMA Models with Hyperbolic Noise Hugo Steinhaus Center Wrocław University of Technology, KBN [53] | 2002 | 1999.01.01–2000.12.31 | USA | ARMA(1,6) (January 1.—February 28.) | MAPE | 1.66 | 174 | ||
ARMA Adaptive (January 3.—February 28.) | MAPE | 1.66 | 175 | |||||||
ARMA(1,6) (January 1.—February 28.) | MAPE | 1.24 | 176 | |||||||
ARMA Adaptive (January 3.—February 28.) | MAPE | 1.23 | 177 | |||||||
37. | Nowotarski J. et al. Improving Short Term Load Forecast Accuracy via Combining Sister Forecasts Hugo Steinhaus Center Wrocław University of Technology, University of North Carolina at Charlotte [54] | 2015 | 2007.01.01–2011.12.31 | USA | SA—Simple Averaging(ea) | MAPE(ea) | 2.10 | 2.82 | 178 | |
AT(PU—ea) (Average Trimming) | MAPE(ea) | 2.10 | 2.82 | 179 | ||||||
WA(UW—ea) (Winsor’s Averaging) | MAPE(ea) | 2.10 | 2.83 | 180 | ||||||
OLS(MNKea) (Ordinary Least Squares) | MAPE(ea) | 2.14 | 2.82 | 181 | ||||||
RMAD(ea) (Regression of the Minimum Absolute Deviation) | MAPE(ea) | 2.14 | 2.83 | 182 | ||||||
LSLPW(ea) (Least Squares Limited —Positive Weights) | MAPE(ea) | 2.12 | 2.81 | 183 | ||||||
LSL(ea) (Least Squares Limited) | MAPE(ea) | 2.11 | 2.83 | 184 | ||||||
IRMSEA(ea) (IRMSE Averaging) | MAPE(ea) | 2.10 | 2.82 | 185 | ||||||
BI—C(ea) (The Best Individual Calibration Window) | MAPE(ea) | 2.25 | 2.93 | 186 | ||||||
SM—Sister Model 1(ea) | MAPE(ea) | 2.29 | 3.09 | 187 | ||||||
SM—Sister Model 2(ea) | MAPE(ea) | 2.24 | 3.15 | 188 | ||||||
SM—Sister Model 3(ea) | MAPE(ea) | 2.34 | 3.01 | 189 | ||||||
SM—Sister Model 4(ea) | MAPE(ea) | 2.32 | 3.17 | 190 | ||||||
SM—Sister Model 5(ea) | MAPE(ea) | 2.28 | 3.11 | 191 | ||||||
SM—Sister Model 6(ea) | MAPE(ea) | 2.30 | 3.18 | 192 | ||||||
SM—Sister Model 7(ea) | MAPE(ea) | 2.37 | 3.07 | 193 | ||||||
SM—Sister Model 8(ea) | MAPE(ea) | 2.31 | 3.21 | 194 | ||||||
38. | Hsiao-Ten P. Forecast of Electricity Consumption and Economic Growth in Taiwan by State Space Modeling Elsevier Ltd. Energy (34) [55] | 2009 | 2002–2007 | Taiwan | ECSTSP —Error—Correction State Space Model | 2002–2007 | MAPE | 3.90 | 195 | |
2003–2007 | MAPE | 2.57 | 196 | |||||||
2004–2007 | MAPE | 2.38 | 197 | |||||||
2005–2007 | MAPE | 1.52 | 198 | |||||||
2006–2007 | MAPE | 2.57 | 199 | |||||||
2007 | MAPE | 2.04 | 200 | |||||||
STSP —State Space Model | 2002–2007 | MAPE | 4.04 | 201 | ||||||
2003–2007 | MAPE | 2.62 | 202 | |||||||
2004–2007 | MAPE | 2.43 | 203 | |||||||
2005–2007 | MAPE | 1.75 | 204 | |||||||
2006–2007 | MAPE | 2.34 | 205 | |||||||
2007 | MAPE | 2.39 | 206 | |||||||
SARIMA | 2002–2007 | MAPE | 5.32 | 207 | ||||||
2003–2007 | MAPE | 3.79 | 208 | |||||||
2004–2007 | MAPE | 3.01 | 209 | |||||||
2005–2007 | MAPE | 2.87 | 210 | |||||||
2006–2007 | MAPE | 2.18 | 211 | |||||||
2007 | MAPE | 1.20 | 212 | |||||||
39. | Rana M, Koprinska I. Forecasting Electricity Load with Advanced Wavelet Neural Networks Elsevier B.V. Neurocomputing (182) [56] | 2016 | 2006–2007 | Australia | WANN(F—Aus.)—Wavelet Artificial Neural Network | MAPE | 0.27 | 213 | ||
Australia | ANN(Aus.)—Artificial Neural Network | MAPE | 0.28 | 214 | ||||||
Australia | FL(Aus.)—Fuzzy Logic | MAPE | 0.29 | 215 | ||||||
Australia | MTR(Aus.)—Model Tree Rules | MAPE | 0.35 | 216 | ||||||
Australia | ESDS(n-1; Aus.)—Exponential Smoothing—Daily Seasonality | MAPE | 0.30 | 217 | ||||||
Australia | ESWS(n -7; Aus.)—Exponential Smoothing—Weekly Seasonality | MAPE | 0.32 | 218 | ||||||
Australia | ESDWS(n-1 i n -7; Aus.)—Exponential Smoothing—Daily and Weekly Seasonality | MAPE | 0.30 | 219 | ||||||
Australia | ARIMA(n-1; Aus.) Daily | MAPE | 0.30 | 220 | ||||||
Australia | ARIMA(n -7; Aus.) Weekly | MAPE | 0.32 | 221 | ||||||
Australia | ARIMA(n-1 i n -7; Aus.) Daily & Weekly | MAPE | 0.30 | 222 | ||||||
Australia | IM(Aus.)—Industrial Model | MAPE | 0.31 | 223 | ||||||
Australia | NAM(Aus.)—Naive Averaged Method | MAPE | 13.48 | 224 | ||||||
Australia | NDM(Aus.)—Naive Delayed Method | MAPE | 0.47 | 225 | ||||||
Australia | NM(n-1; Aus.)—Naive Method (Previous Day) | MAPE | 5.05 | 226 | ||||||
Australia | NM(n -7; Aus.)—Naive Method (Previous Week) | MAPE | 4.94 | 227 | ||||||
2010–2011 | Spain | ANN(F—Esp)—Wavelet Artificial Neural Network | MAPE | 1.72 | 228 | |||||
Spain | ANN(Esp)—Artificial Neural Network | MAPE | 2.12 | 229 | ||||||
Spain | FL(Esp)—Fuzzy Logic | MAPE | 2.25 | 230 | ||||||
Spain | MTR(Esp)—Model Tree Rules | MAPE | 2.24 | 231 | ||||||
Spain | ESDS(n-1; Esp)—Exponential Smoothing—Daily Seasonality | MAPE | 2.54 | 232 | ||||||
Spain | ESWS(n -7; Esp)—Exponential Smoothing—Weekly Seasonality | MAPE | 2.01 | 233 | ||||||
Spain | ESDWS(n-1 i n -7; Esp)—Exponential Smoothing—Daily and Weekly Seasonality | MAPE | 1.95 | 234 | ||||||
Spain | ARIMA(n-1; Esp) Daily Seasonality | MAPE | 2.45 | 235 | ||||||
Spain | ARIMA(n -7; Esp) Weekly Seasonality | MAPE | 2.00 | 236 | ||||||
Spain | ARIMA(n-1 i n -7; Esp) Daily & Weekly Seasonality | MAPE | 1.89 | 237 | ||||||
Spain | IM(Esp)—Industrial Model | MAPE | 0.31 | 238 | ||||||
Spain | NAM(Esp)—Naive Averaged Method | MAPE | 21.18 | 239 | ||||||
Spain | NDM(Esp)—Naive Delayed Method | MAPE | 5.05 | 240 | ||||||
Spain | NMPD(n-1; Esp)—Naïve Method (Previous Day) | MAPE | 9.45 | 241 | ||||||
Spain | NMPW(D-7; Esp)—Naive Method (Previous Week) | MAPE | 7.42 | 242 | ||||||
40. | Siwek K., Osowski S. Prognozowanie obciążeń 24-godzinnych w systemie elektroenergetycznym z użyciem zespołu sieci neuronowych Przegląd Elektrotechniczny 8(85) [57] | 2009 | 2006–2008 | Poland (NPS) | ANN(MLP)—Artificial Neural Network (Multilayer Perceptron) | MAPE | 2.07 | 243 | ||
ANN(SVM)—Artificial Neural Network (Support Vector Machines) | MAPE | 2.24 | 244 | |||||||
ANN(Elman)—Artificial Neural Network (Elman) | MAPE | 2.26 | 245 | |||||||
ANN(Koh)—Kohonen’s Artificial Neural Network | MAPE | 2.37 | 246 | |||||||
ANN(MLPZ1)—Artificial Neural Network (Committee—Multilayer Perceptron 1) | MAPE | 1.48 | 247 | |||||||
ANN(SVMZ)—Artificial Neural Network (Committee—Support Vector Machines) | MAPE | 1.35 | 248 | |||||||
ANN(BSSZ)—Artificial Neural Network (Committee—BSS) | MAPE | 1.71 | 249 | |||||||
41. | Selivan R.A., Rajagopal R. A Model For The Effect of Aggregation on Short Term Load Forecasting IEEE, Stanford University [58] | 2014 | - | USA | ARMA | MAPE | 2.00 | 250 | ||
SVR (Support Vector Regression) | MAPE | 4.00 | 251 | |||||||
SSN(FF)—Artificial Neural Network (Fast Forward Training) | MAPE | 2.40 | 252 | |||||||
42. | Sousa J.C., Neves LP., Jorge H.M. Assessing the Relevance of Load Profiling Information in Electrical Load Forecasting Based on Neural Network Models Elsevier Ltd. Electrical Power and Energy Systems (40) [59] | 2012 | 2006.12.15–2009.11.30 | Portugal | SSN(OK)—Artificial Neural Network (Municipal Users) | MAPE | 6.13 | 22.39 | 253 | |
ANN(TSDSO)—Artificial Neural Network (Transformer Station of a Distribution System Operator) | MAPE | 5.14 | 5.35 | 254 | ||||||
43. | Wang P., Liu B., Hong T. Electric Load Forecasting with Recency Effect: A Big Data Approach Hugo Steinhaus Center Wrocław University of Technology [60] | 2015 | 2007 | USA | REM—Recent Effect Method (Forecasts for each day with a year in advance) | MAPE | 4.27 | 4.38 | 255 | |
44. | Wang Y., Bielecki J.M. Acclimation and the Response of Hourly Electricity Loads to Meteorological Variables Elsevier Ltd. Energy (142) [61] | 2018 | 1999.07.28–2007.12.31. (Calibration Set) | USA | GRM(Temp.)—General Regression Model (Temperature) | MAPE (Temp.) | ~0.10 | ~4.10 | 256 | |
FGRM(ea; Temperature; Wind)—Full General Regression Model (hourly delays of thermosensitivity, binary variables of historical temperatures in months, wind speed) | MAPE (ea; Temp.; Wind) | ~0.20 | ~4.30 | 257 | ||||||
2008.01.01–2014.12.31. | 2SGRM(Temperature; Wind; Humidity)—2-Step General Regression Model (1.—Fit to the full model; 2.—Adjustment to the model of the influence of humidity on demand) | MAPE (Temp.; Wind; Humid.) | 1.00 | 2.00 | 258 | |||||
45. | Wyrozumski T. Prognozowanie neuronowe w energetyce Politechnika Lubelska, Konferencja REE [62] | 2005 | - | Poland | ANN(ea)—Artificial Neural Network | MAPE (ea) | 1.31 | 4.87 | 259 | |
46. | Yang J. Power System Short-term Load Forecasting TU Darmstadt, Doctoral Thesis [63] | 2006 | 2002 | China | C&RT—Classification and Regression Trees | MAPE | 2.63 | 11.64 | 260 | |
ANN—Artificial Neural Network | MAPE | 1.51 | 4.13 | 261 | ||||||
SVM—Support Vector Machines | MAPE | 1.51 | 3.87 | 262 | ||||||
47. | Yu X., Ji H. A PSO-SVM-Based 24 h Power Load Forecasting Model MATEC Web of Conferences (25) [64] | 2015 | 2014 | China | ANN(BP)—Artificial Neural Network (Back Propagation Training) | MAPE | 3.28 | 4.13 | 263 | |
SVM+PSO—SVM—Support Vector Machines + PSO—Particle Swarm Optimization | MAPE | 2.58 | 2.68 | 264 |
Ranking (1–33) | Model No. | Ranking (34–66) | Model No. | Ranking (67–99) | Model No. | Ranking (100–132) | Model No. |
---|---|---|---|---|---|---|---|
1 | 142 | 34 | 16 | 67 | 91 | 100 | 43 |
2 | 139 | 35 | 98 | 68 | 67 | 101 | 204 |
3 | 256 | 36 | 10 | 69 | 18 | 102 | 33 |
4 | 138 | 37 | 61 | 70 | 247 | 103 | 30 |
5 | 141 | 38 | 103 | 71 | 8 | 104 | 65 |
6 | 140 | 39 | 62 | 72 | 54 | 105 | 114 |
7 | 257 | 40 | 258 | 73 | 261 | 106 | 1 |
8 | 213 | 41 | 60 | 74 | 262 | 107 | 29 |
9 | 214 | 42 | 6 | 75 | 52 | 108 | 80 |
10 | 215 | 43 | 100 | 76 | 198 | 109 | 20 |
11 | 149 | 44 | 58 | 77 | 78 | 110 | 25 |
12 | 217 | 45 | 99 | 78 | 39 | 111 | 237 |
13 | 219 | 46 | 56 | 79 | 82 | 112 | 117 |
14 | 220 | 47 | 102 | 80 | 71 | 113 | 125 |
15 | 222 | 48 | 212 | 81 | 115 | 114 | 160 |
16 | 223 | 49 | 101 | 82 | 150 | 115 | 31 |
17 | 238 | 50 | 59 | 83 | 164 | 116 | 159 |
18 | 218 | 51 | 154 | 84 | 53 | 117 | 234 |
19 | 221 | 52 | 177 | 85 | 77 | 118 | 236 |
20 | 216 | 53 | 176 | 86 | 163 | 119 | 250 |
21 | 148 | 54 | 9 | 87 | 93 | 120 | 233 |
22 | 225 | 55 | 104 | 88 | 74 | 121 | 32 |
23 | 17 | 56 | 68 | 89 | 81 | 122 | 79 |
24 | 14 | 57 | 259 | 90 | 66 | 123 | 200 |
25 | 147 | 58 | 96 | 91 | 75 | 124 | 35 |
26 | 28 | 59 | 64 | 92 | 174 | 125 | 243 |
27 | 12 | 60 | 63 | 93 | 175 | 126 | 73 |
28 | 146 | 61 | 248 | 94 | 92 | 127 | 178 |
29 | 11 | 62 | 19 | 95 | 70 | 128 | 179 |
30 | 145 | 63 | 55 | 96 | 249 | 129 | 180 |
31 | 13 | 64 | 158 | 97 | 228 | 130 | 185 |
32 | 144 | 65 | 113 | 98 | 156 | 131 | 184 |
33 | 7 | 66 | 162 | 99 | 15 | 132 | 183 |
Ranking (133–165) | Model No. | Ranking (166–198) | Model No. | Ranking (199–231) | Model No. | Ranking (232–264) | Model No. |
---|---|---|---|---|---|---|---|
133 | 229 | 166 | 203 | 199 | 87 | 232 | 227 |
134 | 155 | 167 | 5 | 200 | 108 | 233 | 76 |
135 | 38 | 168 | 235 | 201 | 112 | 234 | 226 |
136 | 181 | 169 | 232 | 202 | 136 | 235 | 240 |
137 | 182 | 170 | 36 | 203 | 86 | 236 | 254 |
138 | 211 | 171 | 22 | 204 | 105 | 237 | 127 |
139 | 34 | 172 | 21 | 205 | 129 | 238 | 3 |
140 | 37 | 173 | 196 | 206 | 24 | 239 | 207 |
141 | 188 | 174 | 199 | 207 | 106 | 240 | 166 |
142 | 231 | 175 | 264 | 208 | 208 | 241 | 170 |
143 | 244 | 176 | 157 | 209 | 134 | 242 | 50 |
144 | 186 | 177 | 202 | 210 | 171 | 243 | 253 |
145 | 230 | 178 | 57 | 211 | 173 | 244 | 120 |
146 | 161 | 179 | 260 | 212 | 109 | 245 | 168 |
147 | 245 | 180 | 94 | 213 | 2 | 246 | 49 |
148 | 191 | 181 | 153 | 214 | 172 | 247 | 97 |
149 | 151 | 182 | 40 | 215 | 195 | 248 | 124 |
150 | 187 | 183 | 89 | 216 | 251 | 249 | 27 |
151 | 192 | 184 | 85 | 217 | 201 | 250 | 121 |
152 | 194 | 185 | 210 | 218 | 48 | 251 | 242 |
153 | 72 | 186 | 107 | 219 | 23 | 252 | 169 |
154 | 190 | 187 | 45 | 220 | 110 | 253 | 135 |
155 | 189 | 188 | 88 | 221 | 255 | 254 | 241 |
156 | 205 | 189 | 111 | 222 | 46 | 255 | 137 |
157 | 95 | 190 | 84 | 223 | 123 | 256 | 122 |
158 | 51 | 191 | 209 | 224 | 47 | 257 | 131 |
159 | 193 | 192 | 44 | 225 | 167 | 258 | 133 |
160 | 246 | 193 | 263 | 226 | 130 | 259 | 4 |
161 | 197 | 194 | 26 | 227 | 116 | 260 | 119 |
162 | 206 | 195 | 42 | 228 | 165 | 261 | 118 |
163 | 152 | 196 | 69 | 229 | 128 | 262 | 224 |
164 | 252 | 197 | 143 | 230 | 132 | 263 | 126 |
165 | 41 | 198 | 83 | 231 | 90 | 264 | 239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czapaj, R.; Kamiński, J.; Sołtysik, M. A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems. Energies 2022, 15, 6729. https://doi.org/10.3390/en15186729
Czapaj R, Kamiński J, Sołtysik M. A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems. Energies. 2022; 15(18):6729. https://doi.org/10.3390/en15186729
Chicago/Turabian StyleCzapaj, Rafał, Jacek Kamiński, and Maciej Sołtysik. 2022. "A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems" Energies 15, no. 18: 6729. https://doi.org/10.3390/en15186729
APA StyleCzapaj, R., Kamiński, J., & Sołtysik, M. (2022). A Review of Auto-Regressive Methods Applications to Short-Term Demand Forecasting in Power Systems. Energies, 15(18), 6729. https://doi.org/10.3390/en15186729