Development of Explainable Data-Driven Turbulence Models with Application to Liquid Fuel Nuclear Reactors
Abstract
:1. Introduction
2. Numerical Model
3. Structural Optimization Tool for the Turbulent Anisotropy
3.1. Independent Bases and Invariants for the Description of the Turbulent Anisotropy
3.2. Procedure for the Turbulent Anisotropy Optimization
3.2.1. Model Initialization
3.2.2. Definition of the Error Metric
3.2.3. Optimization of the Constants in Each Candidate Model
3.2.4. Genetic Optimization of Candidate Models
3.2.5. Final Remarks
4. Results
4.1. Optimizing Turbulence Model for Backward-Facing Step (BFS) with a Low Aspect Ratio
4.2. Optimizing Turbulence Model for Backward-Facing Step of Large Aspect Ratio
5. Assessment of the Impact of the Turbulence Model in the Molten Salt Fast Reactor
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Au Lane, J.A.; MacPherson, H.G.; Maslan, F. Fluid Fuel Reactors: Molten Salt Reactors, Aqueous Homogeneous Reactors, Fluoride Reactors, Chloride Reactors, Liquid Metal Reactors and Why Liquid Fission; Addison-Wesley Pub. Co.: Boston, MA, USA, 1958. [Google Scholar]
- Haubenreich, P.N.; Engel, J.R. Experience with the Molten-Salt Reactor Experiment. Nucl. Appl. Technol. 1970, 8, 118–136. [Google Scholar] [CrossRef]
- Mathieu, L.; Heuer, D.; Brissot, R.; Garzenne, C.; Le Brun, C.; Lecarpentier, D.; Liatard, E.; Loiseaux, J.-M.; Méplan, O.; Merle-Lucotte, E.; et al. The thorium molten salt reactor: Moving on from the MSBR. Prog. Nucl. Energy 2006, 48, 664–679. [Google Scholar] [CrossRef]
- Delpech, S.; Merle-Lucotte, E.; Heuer, D.; Allibert, M.; Ghetta, V.; Le-Brun, C.; Doligez, X.; Picard, G. Reactor physic and reprocessing scheme for innovative molten salt reactor system. J. Fluor. Chem. 2009, 130, 11–17. [Google Scholar] [CrossRef]
- Tano, M.; Rubiolo, P.; Doche, O. Progress in modeling solidification in molten salt coolants. Model. Simul. Mater. Sci. Eng. 2017, 25, 074001. [Google Scholar] [CrossRef]
- Andrews, H.B.; McFarlane, J.; Chapel, A.S.; Ezell, N.D.B.; Holcomb, D.E.; De Wet, D.; Greenwood, M.S.; Myhre, K.G.; Bryan, S.A.; Lines, A.; et al. Review of molten salt reactor off-gas management considerations. Nucl. Eng. Des. 2021, 385, 111529. [Google Scholar] [CrossRef]
- Zeng, K.; Hou, J.; Ivanov, K.; Jessee, M.A. Uncertainty Quantification and Propagation of Multiphysics Simulation of the Pressurized Water Reactor Core. Nucl. Technol. 2019, 205, 1618–1637. [Google Scholar] [CrossRef]
- Santanoceto, M.; Tiberga, M.; Perkó, Z.; Dulla, S.; Lathouwers, D. Uncertainty Quantification in steady state simulations of a molten salt system using Polynomial Chaos Expansion Analysis. In Proceedings of the EPJ Web of Conferences 2021, Les Ulis, France, 30 March–4 April 2021; EDP Sciences: Les Ulis, France, 2021; Volume 247, p. 15008. [Google Scholar]
- Bostelmann, F.; Skutnik, S.E.; Walker, E.D.; Ilas, G.; Wieselquist, W.A. Modeling of the Molten Salt Reactor Experiment with SCALE. Nucl. Technol. 2021, 208, 603–624. [Google Scholar] [CrossRef]
- Rouch, H.; Geoffroy, O.; Rubiolo, P.; Laureau, A.; Brovchenko, M.; Heuer, D.; Merle-Lucotte, E. Preliminary thermal–hydraulic core design of the Molten Salt Fast Reactor (MSFR). Ann. Nucl. Energy 2014, 64, 449–456. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998; Volume 2, pp. 103–217. [Google Scholar]
- Taulbee, D.B. An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids A Fluid Dyn. 1992, 4, 2555–2561. [Google Scholar] [CrossRef]
- Girimaji, S.S. Fully explicit and self-consistent algebraic Reynolds stress model. Theor. Comput. Fluid Dyn. 1996, 8, 387–402. [Google Scholar] [CrossRef]
- Menter, F.R.; Garbaruk, A.V.; Egorov, Y. Explicit algebraic reynolds stress models for anisotropic wall-bounded flows. 2012, 3, 89–104. Prog. Flight Phys. 2012, 3, 89–104. [Google Scholar] [CrossRef]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence Modeling in the Age of Data. Annu. Rev. Fluid Mech. 2019, 51, 357–377. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Coutier-Delgosha, O.; Xiao, H. Recent progress in augmenting turbulence models with physics-informed machine learning. J. Hydrodyn. 2019, 31, 1153–1158. [Google Scholar] [CrossRef]
- Brunett, A.; Obabko, A.; Balaprakash, P.; Hu, R.; Liu, Y. Coarse Mesh Turbulence Prediction for Reactor Transient Simulations Using Densely Connected Convolutional Networks. In Proceedings of the 2020 ANS Virtual Winter Meeting, Virtual, 16–19 November 2020. [Google Scholar] [CrossRef]
- Gamahara, M.; Hattori, Y. Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2017, 2, 054604. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, W.; Kou, J.; Liu, Y. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Phys. Fluids 2019, 31, 015105. [Google Scholar] [CrossRef]
- Akolekar, H.D.; Weatheritt, J.; Hutchins, N.; Sandberg, R.D.; Laskowski, G.; Michelassi, V. Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low-pressure tur-bines. J. Turbomach. 2019, 141, 041010. [Google Scholar] [CrossRef]
- Gimenez, J.M.; Bre, F. Optimization of RANS turbulence models using genetic algorithms to improve the predic-tion of wind pressure coefficients on low-rise buildings. J. Wind. Eng. Ind. Aerodyn. 2019, 193, 103978. [Google Scholar] [CrossRef]
- Tano-Retamales, M.; Rubiolo, P.; Doche, O. Development of Data-Driven Turbulence Models in OpenFOAM: Application to Liquid Fuel Nuclear Reactors. In OpenFOAM®; Springer: Cham, Switzerland, 2019; pp. 93–108. [Google Scholar]
- Li, D.J.; Li, Y.Y.; Li, J.X.; Fu, Y. Gesture recognition based on BP neural network improved by chaotic genetic al-gorithm. Int. J. Autom. Comput. 2018, 15, 267–276. [Google Scholar] [CrossRef]
- Saber, T.; Fagan, D.; Lynch, D.; Kucera, S.; Claussen, H.; O’Neill, M. Multi-level grammar genetic program-ming for scheduling in heterogeneous networks. In Proceedings of the European Conference on Genetic Programming, Parma, Italy, 4–6 April 2018; Springer: Cham, Switzerland, 2018; pp. 118–134. [Google Scholar]
- McLeod, M.; Roberts, S.; Osborne, M.A. Optimization, fast and slow: Optimally switching between local and Bayesian optimization. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PMLR. pp. 3443–3452. [Google Scholar]
- Mohammadi, B.; Pironneau, O. Analysis of the k-Epsilon Turbulence Model. IAEA Scientific Reports; France. 1993. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:26037421 (accessed on 10 August 2022).
- Kok, J.C.; Spekreijse, S.P. Efficient and accurate implementation of the k-omega turbulence model in the NLR multi-block Navier-Stokes system. In NRL Scientific Reports; National Aerospace Laboratories: Bangalore, India, 2000. [Google Scholar]
- Menter, F.R.; Kuntz, M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains; Springer: Berlin/Heidelberg, Germany, 2004; pp. 339–352. [Google Scholar]
- Dhakal, T.P.; Walters, D.K. Curvature and Rotation Sensitive Variants of the K-Omega SST Turbulence Model. In Proceedings of the Fluids Engineering Division Summer Meeting, Vail, CO, USA, 2–6 August 2009; Volume 43727, pp. 2221–2229. [Google Scholar]
- Mishra, A.A.; Girimaji, S.S. Toward approximating non-local dynamics in single-point pressure–strain correlation closures. J. Fluid Mech. 2017, 811, 168–188. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Wu, Y.-T.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn. 2011, 99, 154–168. [Google Scholar] [CrossRef]
- Pope, S.B. A more general effective-viscosity hypothesis. J. Fluid Mech. 1975, 72, 331–340. [Google Scholar] [CrossRef]
- Mertzios, B.; Christodoulou, M. On the generalized Cayley-Hamilton theorem. IEEE Trans. Autom. Control 1986, 31, 156–157. [Google Scholar] [CrossRef]
- Levesque, C. A class of fundamental units and some classes of Jacobi-Perron algorithms in pure cubic fields. Pac. J. Math. 1979, 81, 447–466. [Google Scholar] [CrossRef]
- Birgin, E.G.; Martínez, J.M. Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients. Comput. Optim. Appl. 2002, 23, 101–125. [Google Scholar] [CrossRef]
- Worm, T.; Chiu, K. Prioritized grammar enumeration: Symbolic regression by dynamic programming. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands, 6–10 July 2013; pp. 1021–1028. [Google Scholar]
- Head, T.; Kumar, M.; Nahrstaedt, H.; Louppe, G.; Shcherbatyi, I. Scikit-optimize, scikit-optimize/scikit-optimize: Version 0.5.2.; Zenodo. 2018. Available online: https://scikit-learn.org/stable/ (accessed on 10 August 2022).
- Kopera, M.A.; Kerr, R.M.; Blackburn, H.M.; Barkley, D. Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step. Ph.D. Thesis, University of Warwick, Coventry, UK, 2011. [Google Scholar]
- Tano, M.; Rubiolo, P.; Ragusa, J. pyDNSMS a direct numerical simulation tool in Python. In Proceedings of the M&C 2019, Portland, OR, USA, 25–29 August 2021; pp. 171–181. [Google Scholar]
- Ahsan, M. Numerical analysis of friction factor for a fully developed turbulent flow using k−ε turbulence model with enhanced wall treatment. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 269–277. [Google Scholar] [CrossRef]
- Bitter, R.; Mohiuddin, T.; Nawrocki, M. LabVIEW: Advanced Programming Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Aufiero, M.; Cammi, A.; Geoffroy, O.; Losa, M.; Luzzi, L.; Ricotti, M.E.; Rouch, H. Development of an OpenFOAM model for the Molten Salt Fast Reactor transient analysis. Chem. Eng. Sci. 2014, 111, 390–401. [Google Scholar] [CrossRef]
- Tano, M.; Rubiolo, P.; Ragusa, J. Progress in Thermal-Hydraulics Modeling of the Molten Salt Fast Reactor. In Proceedings of the Nuclear Science and 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 2019), Portland, OR, USA, 18–23 August 2019; pp. 4484–4497. [Google Scholar]
- Abou-Jaoude, A.; Harper, S.; Giudicelli, G.; Balestra, P.; Schunert, S.; Martin, N.; Lindsay, A.; Tano, M.; Freile, R. A work-flow leveraging MOOSE transient multiphysics simulations to evaluate the impact of thermophysical property uncertainties on molten-salt reactors. Ann. Nucl. Energy 2021, 163, 108546. [Google Scholar] [CrossRef]
- Shih, T.H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation. NASA Sti/Recon Tech. Rep. N 1994, 95, 11442. [Google Scholar]
1.0 | 1.3 | 1.44 | 1.92 | 0.09 |
Order (Base i) | |
---|---|
First Order (i = 1) | |
Second Order (i = 2) | |
Third Order (i = 3) | |
Fourth Order (i = 4) | |
) | |
Fifth Order (i = 5) |
Model | CPU Time @ 1.2 × 16 GHz | |||
---|---|---|---|---|
k − ε | 14.72 | 14.32 | 13.44 | 674 |
k − ω | 7.76 | 8.14 | 8.33 | 725 |
RSS transport | 4.42 | 4.52 | 5.11 | 1785 |
LES multi-gradient | 0.69 | 0.73 | 0.89 | 74,513 |
Nonlinear fitted cubic model (NLCM) | 5.33 | 4.32 | 7.64 | 1187 |
model (GETFOAM) | 2.65 | 2.47 | 2.42 | 967 |
Model | Error over Training Set [%] | Error over Testing Set [%] | CPU Time @ 1.2 × 16 GHz |
---|---|---|---|
k − ε | 12.4 | 12.7 | 741 |
k − ω | 18.2 | 16.4 | 806 |
RSS transport | 9.8 | 10.5 | 2018 |
LES multi-gradient | 2.6 | 1.6 | 386,143 |
model | 3.2 | 4.1 | 1012 |
Model/Field | Optimized Model Given by Equation (19) Deviation from STD Realizable k − ϵ | Optimized Model Given by Equation (16) Deviation from STD Realizable k − ϵ |
---|---|---|
Velocity | 6.1% | 4.4% |
Pressure | 4.1% | 3.8% |
Temperature | 4.2% | 3.7% |
Average of all delayed neutron precursor family’s concentration | 2.8% | 1.9% |
Prompt nuclear power | 2.8% | 1.8% |
Total change in effective multiplication factor | −62 pcm | −33 pcm |
Total change in effective delayed multiplication factor | −32 pcm | −18 pcm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tano, M.E.; Rubiolo, P. Development of Explainable Data-Driven Turbulence Models with Application to Liquid Fuel Nuclear Reactors. Energies 2022, 15, 6861. https://doi.org/10.3390/en15196861
Tano ME, Rubiolo P. Development of Explainable Data-Driven Turbulence Models with Application to Liquid Fuel Nuclear Reactors. Energies. 2022; 15(19):6861. https://doi.org/10.3390/en15196861
Chicago/Turabian StyleTano, Mauricio E., and Pablo Rubiolo. 2022. "Development of Explainable Data-Driven Turbulence Models with Application to Liquid Fuel Nuclear Reactors" Energies 15, no. 19: 6861. https://doi.org/10.3390/en15196861
APA StyleTano, M. E., & Rubiolo, P. (2022). Development of Explainable Data-Driven Turbulence Models with Application to Liquid Fuel Nuclear Reactors. Energies, 15(19), 6861. https://doi.org/10.3390/en15196861