Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler
Abstract
:1. Introduction
2. Methods
2.1. Boilers and Measuring Points
2.2. Fine Particle Sampling and Measurement
2.3. Analytical Methods for Physical and Chemical Properties of Fine Particles
2.3.1. Micrographs
2.3.2. Elemental Analysis
2.3.3. Organic Carbon and Elemental Carbon
3. Results and Discussion
3.1. Concentration and Size Distributions of Fine Particle
3.2. The Influence of Dust Removal Device to Fine Particle
3.3. Morphological Characteristics of Fine Particle Generated by CFB Boiler
3.4. Study of Chemical Constitutes of Fine Particle Emitted by CFB Boiler
- (1)
- Difficult melting oxides, including Al2O3, SiO2, CaO, Fe2O3;
- (2)
- Alkali metal oxides, including Na2O and K2O;
- (3)
- SO3, assuming S exists in the form of sulfur oxides;
- (4)
- Other elements, including MgO, compounds of trace elements, OC and EC, etc.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wei, F.; Teng, E.; Wu, G.; Hu, W.; Wilson, W.; Chapman, R.; Pau, J.C.; Zhang, J. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environ. Sci. Technol. 1999, 33, 4188–4193. [Google Scholar] [CrossRef]
- Morawska, L.; Zhang, J.J. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 2002, 49, 1045–1058. [Google Scholar] [CrossRef]
- Gibbs, A.R.; Pooley, F.D. Analysis and interpretation of inorganic mineral particles in “lung” tissues. Thorax 1996, 51, 327–334. [Google Scholar] [CrossRef]
- Xu, M.; Yu, D.; Yao, H.; Liu, X.; Qiao, Y. Coal combustion-generated aerosols: Formation and properties. Proc. Combust. Inst. 2011, 33, 1681–1697. [Google Scholar] [CrossRef]
- Senior, C.L.; Helble, J.J.; Sarofim, A.F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Process. Technol. 2000, 65, 263–288. [Google Scholar] [CrossRef]
- Flagan, R.; Friedlander, S. Particle formation in pulverized coal combustion—A review. Recent Dev. Aerosol Sci. 1978, 2, 25–59. [Google Scholar]
- Markowski, G.; Ensor, D.; Hooper, R.; Carr, R. A submicron aerosol mode in flue gas from a pulverized coal utility boiler. Environ. Sci. Technol. 1980, 14, 1400–1402. [Google Scholar] [CrossRef]
- Linak, W.P.; Miller, C.A.; Wendt, J.O. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. J. Air Waste Manag. Assoc. 2000, 50, 1532–1544. [Google Scholar] [CrossRef]
- Yao, Q.; Li, S.-Q.; Xu, H.-W.; Zhuo, J.-K.; Song, Q. Reprint of: Studies on formation and control of combustion particulate matter in China: A review. Energy 2010, 35, 4480–4493. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Wang, Q.; Lu, X.; Zhang, Y.; Zhu, M.; Zhang, Z.; Zhang, D. An experimental investigation into mineral transformation, particle agglomeration and ash deposition during combustion of Zhundong lignite in a laboratory-scale circulating fluidized bed. Fuel 2019, 243, 458–468. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Ji, J.; Zhang, W. Ash deposition behavior in co-combusting high-alkali coal and bituminous coal in a circulating fluidized bed. Appl. Therm. Eng. 2019, 149, 520–527. [Google Scholar] [CrossRef]
- Hernberg, R.; Stenberg, J.; Zethræus, B. Simultaneous in situ measurement of temperature and size of burning char particles in a fluidized bed furnace by means of fiberoptic pyrometry. Combust. Flame 1993, 95, 191–205. [Google Scholar] [CrossRef]
- Valmari, T.; Kauppinen, E.I.; Kurkela, J.; Jokiniemi, J.K.; Sfiris, G.; Revitzer, H. Fly ash formation and deposition during fluidized bed combustion of willow. J. Aerosol Sci. 1998, 29, 445–459. [Google Scholar] [CrossRef]
- Lind, T.; Hokkinen, J.; Jokiniemi, J.K. Fine particle and trace element emissions from waste combustion—Comparison of fluidized bed and grate firing. Fuel Process. Technol. 2007, 88, 737–746. [Google Scholar] [CrossRef]
- Ruan, R.; Xu, X.; Tan, H.; Zhang, S.; Lu, X.; Zhang, P.; Han, R.; Xiong, X. Emission Characteristics of Particulate Matter from Two Ultralow-Emission Coal-Fired Industrial Boilers in Xi’an, China. Energy Fuels 2019, 33, 1944–1954. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Fan, B.; Lv, C.; Xu, M.; Pan, S.; Zhang, K.; Li, L.; Gao, X. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 2. Studies on two 135 MW circulating fluidized bed boilers respectively equipped with an electrostatic precipitator and a hybrid electrostatic filter precipitator. Energy Fuels 2016, 30, 5922–5929. [Google Scholar] [CrossRef]
- Du, Q.; Dong, H.; Lv, D.; Su, L.; Gao, J.; Zhao, Z.; Wang, M. Field measurements on the generation and emission characteristics of PM2.5 generated by utility pulverized coal boiler. J. Energy Inst. 2018, 91, 1009–1020. [Google Scholar] [CrossRef]
- Lind, T.; Kauppinen, E.I.; Maenhaut, W.; Shah, A.; Huggins, F. Ash vaporization in circulating fluidized bed coal combustion. Aerosol Sci. Technol. 1996, 24, 135–150. [Google Scholar] [CrossRef]
- Brems, A.; Chan, C.W.; Seville, J.; Parker, D.; Baeyens, J. The transport disengagement height of fine and coarse particles. In Proceedings of the World Congress on Particle Technology (WCPT), Nuremberg, Germany, 26–29 April 2010. [Google Scholar]
- Qu, C.-R.; Xu, B.; Wu, J.; Liu, J.-X.; Wang, X.-T. Effect of limestone addition on PM2.5 formation during fluidized bed coal combustion under O2/CO2 atmosphere. J. Fuel Chem. Technol. 2013, 41, 1020–1024. [Google Scholar]
- Lu, J.Y.; Li, D.K. Experimental Study on PM10, PM2.5, PM1 Emission Features Influenced by Different Conditions in Pulverized Coal Combustion. Proc. Chin. Soc. Electr. Eng. 2006, 26, 103–107. [Google Scholar]
- Wang, S.P.; Chen, P. On comparison of the static precipitator and the bag house. Technol. Innov. Appl. 2013, 23, 54–55. [Google Scholar]
- Strand, M.; Pagels, J.; Szpila, A.; Gudmundsson, A.; Swietlicki, E.; Bohgard, M.; Sanati, M. Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler. Energy Fuels 2002, 16, 1499–1506. [Google Scholar] [CrossRef]
- Lind, T. Ash Formation in Circulating Fluidised Bed Combustion of Coal and Solid Biomass; Technical Research Centre of Finland: Espoo, Finland, 1999. [Google Scholar]
- Sotiropoulos, D.; Georgakopoulos, A.; Kolovos, N. Impact of free calcium oxide content of fly ash on dust and sulfur dioxide emissions in a lignite-fired power plant. J. Air Waste Manag. Assoc. 2005, 55, 1042–1049. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, M.; Liu, T.; Liu, Z.; Hu, Z. Effect of desulfurization in CFB on the electrostatic precipitator. Ind. Saf. Dust Control 2001, 4, 12–15. [Google Scholar]
- Buhre, B.; Hinkley, J.; Gupta, R.; Nelson, P.; Wall, T. Fine ash formation during combustion of pulverised coal–coal property impacts. Fuel 2006, 85, 185–193. [Google Scholar] [CrossRef]
- Yang, S.; Song, G.; Na, Y.; Song, W.; Qi, X.; Yang, Z. Transformation characteristics of Na and K in high alkali residual carbon during circulating fluidized bed combustion. J. Energy Inst. 2019, 92, 62–73. [Google Scholar] [CrossRef]
- Yang, S.; Song, G.; Na, Y.; Yang, Z. Alkali metal transformation and ash deposition performance of high alkali content Zhundong coal and its gasification fly ash under circulating fluidized bed combustion. Appl. Therm. Eng. 2018, 141, 29–41. [Google Scholar] [CrossRef]
- Shin, W.G.; Qi, C.; Wang, J.; Fissan, H.; Pui, D.Y. The effect of dielectric constant of materials on unipolar diffusion charging of nanoparticles. J. Aerosol Sci. 2009, 40, 463–468. [Google Scholar] [CrossRef]
- Keller, A.; Fierz, M.; Siegmann, K.; Siegmann, H.; Filippov, A. Surface science with nanosized particles in a carrier gas. J. Vac. Sci. Technol. A Vac. Surf. Films 2001, 19, 1–8. [Google Scholar] [CrossRef]
- Oh, H.; Park, H.; Kim, S. Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Sci. Technol. 2004, 38, 1045–1053. [Google Scholar] [CrossRef]
- Rogak, S.N.; Flagan, R.C.; Nguyen, H.V. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 1993, 18, 25–47. [Google Scholar] [CrossRef]
No. | Location | Boiler Type | Coal | Load | Pollution Control Technology | ||
---|---|---|---|---|---|---|---|
Denitration | Dusting | Desulfurization | |||||
1 | Shanxi | CFB boiler | Lignite mixed with peat | 300 MW | — | EFP | Adding limestone sorbent in the furnace |
2 | Inner Mongolia | CFB boiler | Bituminous coal | 300 MW | — | FF | Adding limestone sorbent in the furnace |
3 | Shandong | CFB boiler with external bed | Bituminous coal | 300 MW | — | ESP | Adding limestone sorbent in the furnace |
No. | Proximate Analysis (wt%) | Ultimate Analysis (wt%) | Calorific Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Mad a | Vad b | Aad c | FCad d | Cad | Had | Nad | Sad | Qad MJ/kg | |
1 | 1.83 | 22.57 | 42.44 | 33.16 | 40.98 | 3.58 | 0.54 | 1.52 | 14.97 |
2 | 2.16 | 26.79 | 31.01 | 40.04 | 50.75 | 3.28 | 0.79 | 0.86 | 19.95 |
3 | 5.36 | 20.53 | 33.63 | 40.48 | 46.53 | 3.53 | 1.21 | 1.56 | 22.38 |
Location | SO2 | NO | CO | O2 | NO2 | Temperature |
---|---|---|---|---|---|---|
mg/m3 | mg/m3 | mg/m3 | % | mg/m3 | °C | |
Boiler 1 before dust removal | 178.05 | 174.13 | 58.00 | 5.63 | 0.00 | 139.54 |
Boiler 1 after dust removal | 209.16 | 156.84 | 61.00 | 6.09 | 0.00 | 115.00 |
Boiler 2 before dust removal | 220.00 | 283.00 | 52.00 | 5.24 | 1.00 | 167.80 |
Boiler 2 after dust removal | 371.00 | 263.00 | 49.00 | 5.41 | 0.00 | 142.70 |
Boiler 3 before dust removal | 159.20 | 47.80 | 92.20 | 8.32 | 0.00 | 179.40 |
Boiler 3 after dust removal | 168.67 | 69.50 | 60.00 | 6.97 | 0.00 | 148.80 |
Stage | Di [μm] | Cutting Diameter [μm] | Mass Min [μg/m3] | Mass Max [mg/m3] | Number Min [1/cm3] | Number Max [1/cm3] |
---|---|---|---|---|---|---|
10 | 1.9 | 1.59 | 6.3 | 630 | 0.36 | 4 × 104 |
9 | 1.2 | 0.943 | 3.5 | 350 | 0.8 | 8 × 104 |
8 | 0.76 | 0.609 | 2 | 200 | 1.6 | 2 × 105 |
7 | 0.48 | 0.38 | 1 | 90 | 3 | 3 × 105 |
6 | 0.31 | 0.26 | 0.4 | 40 | 5 | 5 × 105 |
5 | 0.20 | 0.154 | 0.17 | 17 | 9 | 9 × 105 |
4 | 0.12 | 0.093 | 0.078 | 7.8 | 15 | 2 × 106 |
3 | 0.073 | 0.057 | 0.035 | 3.5 | 26 | 3 × 106 |
2 | 0.041 | 0.029 | 0.015 | 1.5 | 50 | 5 × 106 |
1 | 0.021 | 0.007 | 0.005 | 0.5 | 90 | 9 × 106 |
No. | Type | Location | Fine Particles (PM2.5) Concentration | PM2.5/PM10 (%) | PM1.0/PM2.5 (%) | PM0.38/PM2.5 (%) |
---|---|---|---|---|---|---|
Boiler 1 | Number (/cm3) | Before dust removal | 2,899,674.8 | 96.54 | 75.01 | 27.86 |
After dust removal | 13,180.1 | 99.31 | 97.04 | 86.24 | ||
Mass (mg/m3) | Before dust removal | 1629.0 | 31.46 | 12.36 | 0.37 | |
After dust removal | 1.1 | 46.73 | 21.27 | 3.23 | ||
Boiler 2 | Number (/cm3) | Before dust removal | 3,084,830.0 | 94.32 | 72.20 | 23.30 |
After dust removal | 2316.9 | 98.34 | 91.36 | 65.62 | ||
Mass (mg/m3) | Before dust removal | 2026.5 | 21.70 | 12.36 | 0.31 | |
After dust removal | 0.5 | 24.21 | 18.39 | 1.65 | ||
Boiler 3 | Number (/cm3) | Before dust removal | 7,625,854.6 | 97.68 | 89.65 | 72.63 |
After dust removal | 23,984.2 | 99.74 | 96.77 | 81.46 | ||
Mass (mg/m3) | Before dust removal | 2043.9 | 30.60 | 11.12 | 1.28 | |
After dust removal | 2.0 | 48.01 | 29.74 | 5.78 |
Boiler No. | 1 | 2 | 3 |
---|---|---|---|
Type | Electrostatic-fabric filter integrated precipitator (air blowback) | Fabric filter (flue gas blowback) | Electrostatic precipitator (5 electric field) |
Chamber × field | 2 × (2-field + 2-baghouse) | 2 × 4 | 2 × 5 |
Full load flue gas flow(hot), Nm3/s | 597.23 | 541.73 | 577.57 |
Flue gas temperature, °C | 139.54 | 167.80 | 179.40 |
Sectional area, m2 | 576 | 660.96 | |
Flow velocity, m/s | 1.04 | 0.874 | |
Specific collection area, m2/m3/s | 35.7 | 109.86 | |
Field length of Single electric field, m | 4.0 | 3.84 | |
Total filter area, m2 | 36,363 | 34,696 | |
Filter velocity, m/min | 1.2 | 0.8 | |
Filter material | PTFE + PPS | 85%PPS + 15%P84 |
Removal Efficiency (%) | Boiler 1 | Boiler 2 | Boiler 3 |
---|---|---|---|
Removal efficiency of number | 99.545 | 99.925 | 99.685 |
Removal efficiency of mass | 99.936 | 99.975 | 99.902 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Zhang, Y.; Du, Q.; Gao, J.; Shang, Q.; Feng, D.; Huang, Y. Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler. Energies 2022, 15, 6892. https://doi.org/10.3390/en15196892
Dong H, Zhang Y, Du Q, Gao J, Shang Q, Feng D, Huang Y. Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler. Energies. 2022; 15(19):6892. https://doi.org/10.3390/en15196892
Chicago/Turabian StyleDong, Heming, Yu Zhang, Qian Du, Jianmin Gao, Qi Shang, Dongdong Feng, and Yudong Huang. 2022. "Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler" Energies 15, no. 19: 6892. https://doi.org/10.3390/en15196892
APA StyleDong, H., Zhang, Y., Du, Q., Gao, J., Shang, Q., Feng, D., & Huang, Y. (2022). Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler. Energies, 15(19), 6892. https://doi.org/10.3390/en15196892