Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Bacterial Strain and Culture Medium
2.3. Alkaline Pretreatment and Enzymatic Hydrolysis
2.4. Fermentation Strategies
2.5. Analytical Methods
3. Results and Discussion
3.1. Chemical Composition of the Lignocellulosic Feedstock
3.2. Application of SSF and Consolidation SHF/SSF Methods
3.3. Effect of Supplementation of Mineral Compounds on ABE Fermentation
3.4. The Mass Balance of Pretreatment and ABE Fermentation in Relation to Two Methods: SSF and SHF/SSF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bankar, S.B.; Survase, S.A.; Ojamo, H.; Granström, T. Biobutanol: The outlook of an academic and industrialist. RSC Adv. 2013, 3, 24734–24757. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residules. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Kumar, M.; Goyal, Y.; Sarkar, A.; Gayen, K. Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl. Energy 2012, 93, 193–204. [Google Scholar] [CrossRef]
- Cheng, C.; Che, P.; Chen, B.; Lee, W.; Lin, C.; Chang, J. Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl. Energy 2012, 100, 3–9. [Google Scholar] [CrossRef]
- Antoni, D.; Zverlov, V.V.; Schwarz, W.H. Biofuels from Microbes. Appl. Microbiol. Biotechnol. 2007, 77, 23–35. [Google Scholar] [CrossRef]
- Koukiekolo, R.; Cho, H.Y.; Kosugi, A.; Inui, M.; Yukawa, H.; Doi, R.H. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CBPA. Appl. Environ. Microbiol. 2005, 71, 3504–3511. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, Z. Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Appl. Microbiol. Biotechnol. 2009, 83, 415–423. [Google Scholar] [CrossRef]
- Baral, N.; Shah, A. Microbial inhibitors: Formation and effects on acetone–butanol–ethanol fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2014, 98, 9151–9172. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Cotta, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II—fed–batch fermentation. Biomass Bioenergy 2008, 32, 176–183. [Google Scholar] [CrossRef]
- Sabathé, F.; Bélaïch, A.; Soucaille, P. Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol. Lett. 2002, 217, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tracy, B.P.; Jones, S.W.; Fast, A.G.; Indurthi, D.C.; Papoutsakis, E.T. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 2012, 23, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Pfromm, P.H.; Amanor-Boadu, V.; Nelson, R.; Vadlani, P.; Madl, R. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy 2010, 34, 515–524. [Google Scholar] [CrossRef]
- Xin, F.; Wu, Y.R.; He, J. Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3. Appl. Environ. Microbiol. 2014, 80, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, S. Production of n–butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass Bioenergy 2012, 39, 39–47. [Google Scholar] [CrossRef]
- Survase, S.A.; Sklavounos, E.; Heiningen, A.V.; Granstrom, T. Market refused vegetables as a supplement for improved acetone–butanol–ethanol production by Clostridium acetobutylicum DSM 792. Ind. Crops. Prod. 2013, 45, 349–354. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, Y.; Li, F.; Ma, C.; Xu, P. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 2010, 37, 495–501. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Ramli, N.; Bahrin, E.K.; Abd-Aziz, S. Cellulosic biobutanol by Clostridia: Challenges and improvements. Renew. Sustain. Energy Rev. 2017, 79, 1241–1254. [Google Scholar] [CrossRef]
- Capilla, M.; San-Valero, P.; Izquierdo, M.; Penya-roja, J.M.; Gabaldon, C. The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792. Biochem. Eng. J. 2021, 167, 107910. [Google Scholar] [CrossRef]
- Kolesińska, B.; Fraczyk, J.; Binczarski, M.; Modelska, M.; Berłowska, J.; Dziugan, P.; Antolak, H.; Kaminski, Z.J.; Witońska, I.A.; Kregiel, D. Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials 2019, 12, 350. [Google Scholar] [CrossRef]
- Kudahettige-Nilsson, R.L.; Helmerius, J.; Nilsson, R.T.; Sjöblom, M.; Hodge, D.B.; Rova, U. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor. Bioresour. Technol. 2015, 176, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Patakova, P.; Linhova, M.; Rychtera, M.; Paulova, L.; Melzoch, K. Novel and neglected issues of acetone–butanol–ethanol (ABE) fermentation by Clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol. Adv. 2013, 31, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Ramanjaneyulu, G.; RajasekharReddy, B. Chapter 21—Emerging Trends of Microorganism in the Production of Alternative Energy. In Recent Developments in Applied Microbiology and Biochemistry; Viswanath, B., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 2, pp. 275–305. [Google Scholar]
- Ezeji, T.; Qureshi, N.; Blaschek, H. Continuous butanol fermentation and feed starch retrogradation: Butanol fermentation sustainability using Clostridium beijerinckii BA101. J. Biotechnol. 2005, 115, 179–187. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Z.; Zhang, R. Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric. Biol. Eng. 2009, 2, 51–68. [Google Scholar] [CrossRef]
- Sasaki, C.; Kushiki, Y.; Asada, C.; Nakamura, Y. Acetone–butanol–ethanol production by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methods using acorns and wood chips of Quercus acutissima as a carbon source. Ind. Crops Prod. 2014, 62, 286–292. [Google Scholar] [CrossRef]
- Guan, W.J.; Shi, S.; Blersch, D. Effects of Tween 80 on fermentative butanol production from alkali-pretreated switchgrass. Biochem. Eng. J. 2018, 135, 61–70. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2007, 9, 1621–1651. [Google Scholar] [CrossRef]
- Araque, E.; Parra, C.; Freer, J.; Contreras, D. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb. Technol. 2008, 43, 214–219. [Google Scholar] [CrossRef]
- Husin, H.; Ibrahim, M.F.; Bahrin, E.K.; Abd-Aziz, S. Simultaneous saccharification and fermentation of sago hampas into biobutanol by Clostridium acetobutylicum ATCC 824. Energy Sci. Eng. 2019, 7, 66–75. [Google Scholar] [CrossRef]
- Krishna, H.S.; Chowdary, G.V. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J. Agric. Food Chem. 2000, 48, 1971–1976. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Abd-Aziz, S.; Yusoff, M.E.M.; Phang, L.Y.; Hassan, M.A. Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew. Energy 2015, 77, 447–455. [Google Scholar] [CrossRef]
- Kotarska, K.; Czupryński, B.; Kłosowski, G. Effect of various activators on the course of alcoholic fermentation. J. Food Eng. 2006, 77, 965–971. [Google Scholar] [CrossRef]
- Xue, C.; Zhao, X.; Bai, F. Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol Bioeng. 2010, 105, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xue, C.; Ge, X.; Yuan, W.; Wang, J.; Bai, F. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 2009, 139, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Hughes, S.R.; Cotta, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—batch fermentation. Biomass Bioenergy 2008, 32, 168–175. [Google Scholar] [CrossRef]
- Al-Shorgani, N.K.N.; Kalil, M.S.; Yusoff, W.M.W. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 2012, 35, 817–826. [Google Scholar] [CrossRef]
- Wu, Y.D.; Xue, C.; Chen, L.J.; Bai, F.W. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J. Biotechnol. 2013, 165, 18–21. [Google Scholar] [CrossRef]
- Liang, L.; Quesada, H.J. Green design of a cellulosic butanol supply chain network: A case study of sorghum stem bio-butanol in Missouri. BioRes. 2018, 13, 5617–5642. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Gu, X.; Huang, Z.; Cai, J.; Gong, J.; Wu, X.; Lee, C.-F. Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR. Fuel 2012, 93, 611–617. [Google Scholar] [CrossRef]
- Patakova, P.; Maxa, D.; Rychtera, M.; Linhova, L.; Fribert, P.; Muzikova, Z. Perspectives of biobutanol production and use. In Biofuel’s Engineering Process Technology; Bernandes, M.A.D.S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 243–266. [Google Scholar]
- Li, J.; Wang, L.; Chen, H. Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw. J. Biosci. Bioeng. 2016, 122, 620–626. [Google Scholar] [CrossRef]
- Kotarska, K.; Dziemianowicz, W.; Świerczyńska, A. Study on the sequential combination of bioethanol and biogas production from corn straw. Molecules 2019, 24, 4558. [Google Scholar] [CrossRef] [PubMed]
- Canilha, L.; Carvalho, W.; Felipe, M.G.A.; Silva, J.B.A. Xylitol production fromwheat straw hemicellulosic hydrolysate: Hydrolysate detoxification and carbonsource used for inoculum preparation. Braz. J. Microbiol. 2008, 39, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Linggang, S.; Phang, L.Y.; Wasoh, H.; Abd-Aziz, S. Acetone–butanol–ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnergy Res. 2013, 6, 321–328. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Shi, S.; Tu, M. Effect of residual extractable lignin on acetone–butanol–ethanol production in SHF and SSF processes. Biotechnol Biofuels 2020, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Hari Krishna, S.; Janardhan Reddy, T.; Chowdary, G.V. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour. Technol. 2001, 77, 193–196. [Google Scholar] [CrossRef]
- Nur, A.A.M.R.; Mohamad, F.I.; Ezyana, K.B.; Suraini, A. Optimisation of simultaneous saccharification and fermentation (SSF) for biobutanol production using pretreated oil palm empty fruit bunch. Molecules 2018, 23, 1944. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Ma, X.; Xue, C. High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochem. 2021, 100, 20–25. [Google Scholar] [CrossRef]
- Birch, R.M.; Walker, G.M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzym. Microb. Technol. 2000, 26, 678–687. [Google Scholar] [CrossRef]
- Rees, E.M.R.; Stewart, G.G. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts. J. Inst. Brew. 1997, 103, 287–291. [Google Scholar] [CrossRef]
Chemical Composition | Raw Corn Straw | Treated Corn Straw |
---|---|---|
Cellulose (% DW) | 19.54 ± 0.45 | 6.55 ± 0.09 |
Hemicellulose (% DW) | 16.41 ± 1.59 | 5.21 ± 0.17 |
Total lignin (% DW) | 4.28 ± 0.20 | 3.18 ± 0.15 |
Other 1 (% DW) | 59.77 ± 2.16 | 85.06 ± 3.21 |
Total sugars (g/L) | NA 2 | 39.78 ± 0.13 |
Sugar conversion (%) | NA | 72.70 ± 1.68 |
Feedstock | Microorganism | Fermentation Method | ABE | Reference | ||
---|---|---|---|---|---|---|
Conc. (g/L) | Productivity (g/L/h) | Yield (g/g) | ||||
Wood chip | C. acetobutylicum | SSF | 13.4 | 0.09 | 0.27 | [25] |
OPEFB 1 | C. acetobutylicum | SSF | 7.4 | 0.06 | 0.16 | [48] |
Switchgrass | C. acetobutylicum | SSF | 12.3 | 0.10 | 0.26 | [26] |
Wheat straw | C. beijerinckii | SSF | 11.9 | 0.27 | 0.42 | [35] |
Wheat bran | C. beijerinckii | SSF | 11.8 | 0.16 | 0.32 | [16] |
Corn straw | C. acetobutylicum | SSF | 17.1 | 0.20 | 0.22 | [42] |
Corn straw | C. acetobutylicum | SSF | 18.2 | 0.30 | 0.31 | [49] |
Corn straw | C. acetobutylicum | SSF | 21.3 | 0.22 | 0.54 | This study |
Corn straw | C. acetobutylicum | SHF/SSF | 23.2 | 0.24 | 0.58 | This study |
Products and Fermentation Parameters | SSF | SHF/SSF | ||
---|---|---|---|---|
With Mineral Compounds | Without Mineral Compounds | With Mineral Compounds | Without Mineral Compounds | |
Acetone (g/L) | 1.85 c ± 0.06 | 1.23 a ± 0.04 | 1.83 c ± 0.03 | 1.64 b ± 0.04 |
Butanol (g/L) | 24.03 c ± 0.77 | 18.47 a ± 0.59 | 28.64 d ± 0.42 | 20.21 b ± 0.28 |
Ethanol (g/L) | 2.48 d ± 0.10 | 1.64 c ± 0.02 | 0.86 a ± 0.02 | 1.31 b ± 0.02 |
Total ABE (g/L) | 28.35 c ± 0.61 | 21.33 a ± 0.52 | 31.33 d ± 0.37 | 23.15 b ± 0.30 |
Incubation time (h) | 96 | 96 | 96 | 96 |
ABE yield (g/g) | 0.71 c ± 0.02 | 0.54 a ± 0.01 | 0.79 d ± 0.02 | 0.58 b ± 0.02 |
Butanol yield (g/g) | 0.60 c ± 0.02 | 0.46 a ± 0.02 | 0.72 d ± 0.02 | 0.51 b ± 0.01 |
ABE productivity (g/L/h) | 0.295 c ± 0.005 | 0.222 a ± 0.006 | 0.327 d ± 0.004 | 0.241 b ± 0.003 |
Butanol productivity (g/L/h) | 0.250 b ± 0.006 | 0.192 a ± 0.008 | 0.298 c ± 0.006 | 0.211 a ± 0.003 |
Fermentable sugars (g/L) | 26.48 b ± 0.25 | 24.26 a ± 0.08 | 27.20 c ± 0.13 | 24.81 a ± 0.18 |
Sugar fermentation rate (g/L/h) | 0.148 b ± 0.003 | 0.128 a ± 0.001 | 0.155 c ± 0.002 | 0.130 a ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziemianowicz, W.; Kotarska, K.; Świerczyńska, A. Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation. Energies 2022, 15, 6899. https://doi.org/10.3390/en15196899
Dziemianowicz W, Kotarska K, Świerczyńska A. Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation. Energies. 2022; 15(19):6899. https://doi.org/10.3390/en15196899
Chicago/Turabian StyleDziemianowicz, Wojciech, Katarzyna Kotarska, and Anna Świerczyńska. 2022. "Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation" Energies 15, no. 19: 6899. https://doi.org/10.3390/en15196899
APA StyleDziemianowicz, W., Kotarska, K., & Świerczyńska, A. (2022). Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation. Energies, 15(19), 6899. https://doi.org/10.3390/en15196899