In Situ Thermal Ablation Repair of Delamination in Carbon Fiber-Reinforced Thermosetting Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFRTP Manufacture
2.2. Impact Event
2.3. Burning Effect on CF Yarns and CFRTPs
2.4. Dosage of Healing Agent Estimation
2.5. In-Plane Compression after Impact (CAI) Tests
3. Results and Discussions
3.1. In Situ Thermal Ablation Repair Approach
3.2. Burning Effect on the Mechanical Properties of CF Yarns and CFRTPs
3.3. In Situ Thermal Ablation Repair of Delamination in CF/Epoxy Panel
3.4. Repair Efficiency Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Xuan, F.Z.; Lei, H.S.; Wang, Z.Q.; Xiang, Y.X.; Yang, K.; Tang, X.J.; Liang, X.Y. Simultaneously enhancing the IFSS and monitoring the interfacial stress state of GF/epoxy composites via building in the MWCNT interface sensor. Composites Part A 2018, 112, 161. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.H.; Leng, J.S. Multi-performance shape memory epoxy resins and their composites with narrow transition temperature range. Compos. Sci. Technol. 2021, 213, 108899. [Google Scholar] [CrossRef]
- Wang, W.T.; Yu, B.S.; Zhang, Y.W.; Peng, M. Fully aminated rigid-rod aramid reinforced high strength epoxy resin and its composite with carbon fibers. Compos. Sci. Technol. 2022, 221, 109324. [Google Scholar] [CrossRef]
- García, V.R.; Herráez, M.; Martínez, V.; Villoria, R.G. Interlaminar and translaminar fracture toughness of Automated Manufactured Bio-inspired CFRP laminates. Compos. Sci. Technol. 2022, 219, 109236. [Google Scholar] [CrossRef]
- Pan, T.B.; Zheng, Y.L.; Zhou, Y.J.; Liu, Y.C.; Yu, K.L.; Zhou, Y.B. Coupled effects of corrosion damage and sustained loading on the flexural behavior of RC beams strengthened with CFRP anchorage system. Compos. Struct. 2022, 289, 115416. [Google Scholar] [CrossRef]
- Ding, J.L.; Cheng, L. Ultra-high three-point bending fatigue fracture characteristics of CFRP modified by MWCNTs and fatigue life data analysis. Compos. Struct. 2021, 259, 113468. [Google Scholar] [CrossRef]
- Hasebe, S.; Higuchi, R.; Yokozeki, T.; Takeda, S. Internal low-velocity impact damage prediction in CFRP laminates using surface profiles and machine learning. Compos. Part. B 2022, 237, 109844. [Google Scholar] [CrossRef]
- Falcó, O.; Lopes, C.S.; Sommer, D.E.; Thomson, D.; Ávila, R.L.; Tijs, B.H.A.H. Experimental analysis and simulation of low-velocity impact damage of composite laminates. Compos. Struct. 2022, 287, 115278. [Google Scholar] [CrossRef]
- Rezasefat, M.; Gonzalez, J.A.; Giglio, M.; Manes, A. Numerical study on the dynamic progressive failure due to low-velocity repeated impacts in thin CFRP laminated composite plates. Thin-Walled Struct. 2021, 167, 108220. [Google Scholar] [CrossRef]
- Zhang, H.W.; Yang, D.; Ding, H.M.; Wang, H.; Xu, Q.; Ma, Y.C.; Bi, Y.B. Effect of Z-pin insertion angles on low-velocity impact mechanical response and damage mechanism of CFRP laminates with different layups. Compos. Part. A 2021, 150, 106593. [Google Scholar] [CrossRef]
- Salvetti, M.; Sbarufatti, C.; Gilioli, A.; Dziendzikowski, M.; Dragan, K.; Manes, A.; Giglio, M. On the mechanical response of CFRP composite with embedded optical fibre when subjected to low velocity impact and CAI tests. Compos. Struct. 2017, 179, 21–34. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Lee, J.; Fu, K.K.; Li, Y. In-plane compression response of woven CFRP composite after low-velocity impact: Modelling and experiment. Thin-Walled Struct. 2021, 158, 107186. [Google Scholar] [CrossRef]
- Pittala, R.K.; Dhanaraju, G.; Ben, B.S.; Ben, B.A. Self-healing of matrix cracking and delamination damage assessment in microcapsules reinforced carbon fibre epoxy composite under flexural loading. Compos. Struct. 2022, 291, 115691. [Google Scholar] [CrossRef]
- Luan, C.; Yao, X.; Zhang, C.; Fu, J.; Wang, B. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos. Sci. Technol. 2020, 188, 107986. [Google Scholar] [CrossRef]
- Jin, H.H.; Mangun, C.L.; Griffin, A.S.; Moore, J.S.; Sottos, N.R.; White, S.R. Thermally Stable Autonomic Healing in Epoxy using a Dual-Microcapsule System. Adv. Mater. 2014, 26, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Patrick, J.F.; Hart, K.R.; Krull, B.P.; Diesendruck, C.E.; Moore, J.S.; White, S.R.; Sottos, N.R. Continuous Self-Healing Life Cycle in Vascularized Structural Composites. Adv. Mater. 2014, 26, 4302–4308. [Google Scholar] [CrossRef]
- Gergely, R.C.R.; Cruz, W.A.S.; Krull, B.P.; Pruitt, E.L.; Wang, J.; Sottos, N.R.; White, S.R. Restoration of Impact Damage in Polymers via a Hybrid Microcapsule–Microvascular Self-Healing System. Adv. Funct. Mater. 2018, 28, 1704197. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Farsani, R.E.; Khaljiri, H.E. Experimental investigation of the healing properties of the microvascular channels-based self-healing glass fibers/epoxy composites containing the three-part healant. Polym. Test. 2020, 91, 106862. [Google Scholar] [CrossRef]
- Kanua, N.J.; Guptab, E.; Vatesb, U.K.; Singh, G.K. Self-healing composites: A state-of-the-art review. Compos. Part. A 2019, 121, 474–486. [Google Scholar] [CrossRef]
- Nguyen, A.T.T.; Orifici, A.C. Structural assessment of microvascular self-healing laminates using progressive damage finite element analysis. Compos. Part. A 2012, 43, 1886–1894. [Google Scholar] [CrossRef] [Green Version]
- Slattery, P.G.; McCarthy, C.T.; O’Higgins, R.M. Development of a novel cyanoacrylate injection repair procedure for composites. Compos. Struct. 2016, 153, 1–11. [Google Scholar] [CrossRef]
- Zhou, W.; Jia, X.L.; Yang, S.; Liu, J.; Ma, L.H. Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct. 2021, 263, 113659. [Google Scholar] [CrossRef]
- Moreira, R.D.F.; Moura, M.F.S.F.; Silva, F.G.A.; Reis, J.P. High-cycle fatigue analysis of adhesively bonded composite scarf repairs. Compos. Part. B 2020, 190, 107900. [Google Scholar] [CrossRef]
- Lai, W.L.; Saeedipour, H.; Goh, K.L. Mechanical properties of low-velocity impact damaged carbon fibre reinforced polymer laminates: Effects of drilling holes for resin-injection repair. Compos. Struct. 2020, 235, 111806. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, W.; Zhou, J.; Altenaiji, M.; Cantwell, W.J.; Wang, Q.Y.; Guan, Z.W. Mechanical behaviour of composite laminates repaired with a stitched scarf patch. Compos. Struct. 2021, 255, 112928. [Google Scholar] [CrossRef]
- Lai, W.L.; Saeedipour, H.; Goh, K.L. Experimental assessment of drilling-induced damage in impacted composite laminates for resin-injection repair: Influence of open/blind hole-hole interaction and orientation. Compos. Struct. 2021, 271, 114153. [Google Scholar] [CrossRef]
- Thunga, M.; Larson, K.; Lio, W.; Weerasekera, T.; Akinc, M.; Kessler, M.R. Low viscosity cyanate ester resin for the injection repair of hole-edge delaminations in bismaleimide/carbon fiber composites. Compos. Part. A 2013, 52, 31–37. [Google Scholar] [CrossRef]
- Damghani, M.; Bolanos, S.; Chahar, A.; Matthews, J.; Atkinson, G.A.; Murphy, A.; Edwards, T. Design, novel quality check and experimental test of an original variable length stepped scarf repair scheme. Compos. Part. B 2022, 230, 1090542. [Google Scholar] [CrossRef]
- Balakrishnan, V.S.; Seidlitz, H. Potential repair techniques for automotive composites: A review. Compos. Part. B 2018, 145, 28–38. [Google Scholar] [CrossRef]
- Slattery, P.G.; McCarthy, C.T.; Higgins, R.M.O. Assessment of residual strength of repaired solid laminate composite materials through mechanical testing. Compos. Struct. 2016, 147, 122–130. [Google Scholar] [CrossRef]
- Min, S.; Chen, X.; Chai, Y.; Lowe, T. Effect of reinforcement continuity on the ballistic performance of composites reinforced with multiply plain weave fabric. Compos. Part. B 2016, 90, 30–36. [Google Scholar] [CrossRef]
- Unterweger, C.; Mayrhofer, T.; Piana, F.; Duchoslav, J.; Stifter, D.; Poitzsch, C.; Fürst, C. Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites. Compos. Sci. Technol. 2020, 188, 107998. [Google Scholar] [CrossRef]
- Abusrea, M.R.; Han, S.W.; Arakawa, K.; Choi, N.S. Bending strength of CFRP laminated adhesive joints fabricated by vacuum-assisted resin transfer molding. Compos. Part. B 2019, 156, 8–16. [Google Scholar] [CrossRef]
- Aktaş, M.; Karakuzu, R.; Arman, Y. Compression-after impact behavior of laminated composite plates subjected to low velocity impact in high temperatures. Compos. Struct. 2009, 89, 77–82. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, T.; Kim, Y.; Yang, Z.; Li, Y.; Yu, T. Different-structured nanoclays incorporated composites: Computational and experimental analysis on mechanical properties. Compos. Sci. Technol. 2021, 8, 108612. [Google Scholar] [CrossRef]
- Yatim, N.M.; Shamsudin, Z.; Shaaban, A.; Sani, N.A.; Jumaidin, R.; Shariff, E.A. Thermal analysis of carbon fibre reinforced polymer decomposition. Mater. Res. Express 2020, 7, 015615. [Google Scholar] [CrossRef]
- Grigoriou, K.; Mouritz, A.P. Comparative assessment of the fire structural performance of carbon-epoxy composite and aluminium alloy used in aerospace structures. Mater. Des. 2016, 108, 699–706. [Google Scholar] [CrossRef]
- Kwak, B.-S.; Lee, G.-E.; Kang, G.S.; Kweon, J.-H. An investigation of repair methods for delaminated composite laminate under flexural load. Compos. Struct. 2019, 215, 249–257. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, A.; Wang, J. Estimation of low velocity impact on the scarf repair GFRP composite: Experimental method. Mater. Today Proc. 2021, 43, 731–739. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cang, Y.; Hu, W.; Zhu, D.; Yang, L.; Hu, C.; Yuan, Y.; Wang, F.; Yang, B. In Situ Thermal Ablation Repair of Delamination in Carbon Fiber-Reinforced Thermosetting Composites. Energies 2022, 15, 6927. https://doi.org/10.3390/en15196927
Cang Y, Hu W, Zhu D, Yang L, Hu C, Yuan Y, Wang F, Yang B. In Situ Thermal Ablation Repair of Delamination in Carbon Fiber-Reinforced Thermosetting Composites. Energies. 2022; 15(19):6927. https://doi.org/10.3390/en15196927
Chicago/Turabian StyleCang, Yu, Wenlong Hu, Dalei Zhu, Lulu Yang, Chaojie Hu, Yiwen Yuan, Fangxin Wang, and Bin Yang. 2022. "In Situ Thermal Ablation Repair of Delamination in Carbon Fiber-Reinforced Thermosetting Composites" Energies 15, no. 19: 6927. https://doi.org/10.3390/en15196927
APA StyleCang, Y., Hu, W., Zhu, D., Yang, L., Hu, C., Yuan, Y., Wang, F., & Yang, B. (2022). In Situ Thermal Ablation Repair of Delamination in Carbon Fiber-Reinforced Thermosetting Composites. Energies, 15(19), 6927. https://doi.org/10.3390/en15196927