Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Energy Supply
3.1.1. Oil Extraction and Petroleum Products Production
3.1.2. Electricity
3.2. Energy Demand, Economic Activity, and Energy Intensity
3.3. Transition in Transport Sector
3.4. Emissions and Indicators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IAM | Integrated Assessment Model |
EEDEC | Ecuadorian Energy Development under Energy Constraints |
MBbl | Million Barrels |
URR | Ultimately Recoverable Resources |
BAU | Business as Usual |
CEET | Conservative Efforts for Energy Transition |
MEET | Maximum Efforts for Energy Transition |
NRE | Non-Renewable Energy |
RES | Renewable Energy Sources |
TFEC | Total Final Energy Consumption |
References
- Nieto, J.; Carpintero, Ó.; Miguel, L.J.; de Blas, I. Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Policy 2020, 137, 111090. [Google Scholar] [CrossRef]
- Change UNFC on C. Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L. 9/Rev. 1 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 16 June 2022).
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Sovacool, B.K. An international assessment of energy security performance. Ecol. Econ. 2013, 88, 148–158. [Google Scholar] [CrossRef]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Vanegas Cantarero, M.M. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Res. Soc. Sci. 2020, 70, 101716. [Google Scholar] [CrossRef]
- Fattouh, B.; Poudineh, R.; West, R. The rise of renewables and energy transition: What adaptation strategy exists for oil companies and oil-exporting countries? Energy Transit. 2019, 3, 45–58. [Google Scholar] [CrossRef]
- Gass, P.; Echeverria, D. Fossil Fuel Subsidy Reform and the Just Transition. 2017. Available online: https://www.iisd.org/system/files/publications/fossil-fuel-subsidy-reform-just-transition.pdf (accessed on 16 June 2022).
- González, M.O.A.; Gonçalves, J.S.; Vasconcelos, R.M. Sustainable development: Case study in the implementation of renewable energy in Brazil. J. Clean Prod. 2017, 142, 461–475. [Google Scholar] [CrossRef]
- Washburn, C.; Pablo-Romero, M. Measures to promote renewable energies for electricity generation in Latin American countries. Energy Policy 2019, 128, 212–222. [Google Scholar] [CrossRef]
- Ministerio de Energía y Recursos Naturales No Renovables M, MERNNR M de E y RNNR. Plan Maestro de Electricidad 2018-2027, 2020, 16. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2020/01/1.-RESUMEN-EJECUTIVO.pdf (accessed on 16 June 2022).
- Wesseh, P.K.; Lin, B. Renewable energy technologies as beacon of cleaner production: A real options valuation analysis for Liberia. J. Clean Prod. 2015, 90, 300–310. [Google Scholar] [CrossRef]
- Gu, J.; Renwick, N.; Xue, L. The BRICS and Africa’s search for green growth, clean energy and sustainable development. Energy Policy 2018, 120, 675–683. [Google Scholar] [CrossRef]
- Zapata S, Castaneda M, Aristizabal AJ, Dyner I. Renewables for supporting supply adequacy in Colombia. Energy 2022, 239, 122157. [Google Scholar] [CrossRef]
- Ouedraogo, N.S. Africa energy future: Alternative scenarios and their implications for sustainable development strategies. Energy Policy 2017, 106, 457–471. [Google Scholar] [CrossRef]
- Vidadili, N.; Suleymanov, E. Transition to Renewable Energy and Sustainable Energy Development in Azerbaijan; Elsevier: Amsterdam, The Netherlands, 2016; Available online: https://www.researchgate.net/publication/310951836_Transition_to_Renewable_Energy_and_Sustainable_Energy_Development_in_Azerbaijan (accessed on 16 June 2022).
- Edalati, S.; Ameri, M.; Iranmanesh, M.; Sadeghi, Z. Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran. Renew. Sustain. Energy Rev. 2017, 69, 1271–1280. [Google Scholar] [CrossRef]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef]
- Delannoy, L.; Longaretti, P.Y.; Murphy, D.J.; Prados, E. Peak oil and the low-carbon energy transition: A net-energy perspective. Appl. Energy 2021, 304, 117843. [Google Scholar] [CrossRef]
- Janetos, A.; Clarke, L.; Collins, W.; Ebi, K.; Edmonds, J.; Foster, I.; Jacoby, J.; Judd, K.; Leung, L.; Newell., R.; et al. Science Challenges and Future Directions: Climate Change Integrated Assessment Research. In Dept. Energy Wash.; 2009. Available online: https://science.osti.gov/-/media/ber/pdf/Ia_workshop_low_res_06_25_09.pdf (accessed on 16 June 2022).
- Gambhir, A. Planning a Low-Carbon Energy Transition: What Can and Can’t the Models Tell Us? Joule 2019, 3, 1795–1798. [Google Scholar] [CrossRef]
- Soria, R.; Lucena, A.F.P.; Tomaschek, J.; Fichter, T.; Haasz, T.; Szklo, A.; Schaeffer, R.; Rochedo, P.; Fahl, U.; Kern, J. Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach. Energy 2016, 116, 265–280. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Blas, I.; Nieto, J.; de Castro, C.; Miguel, L.J.; Carpintero, Ó.; Mediavilla, M.; Lobejón, L.F.; Ferreras-Alonso, N.; Rodrigo, P. MEDEAS: A new modeling framework integrating global biophysical and socioeconomic constraints. Energy Environ. Sci. 2020, 13, 986–1017. [Google Scholar] [CrossRef]
- Bataille, C.; Waisman, H.; Briand, Y.; Svensson, J.; Vogt-Schilb, A.; Jaramillo, M.; Delgado, R.; Arguello, R.; Clarke, L.; Wild, T. Net-zero deep decarbonization pathways in Latin America: Challenges and opportunities. Energy Strateg. Rev. 2020, 30, 100510. [Google Scholar] [CrossRef]
- Jackson, P.M.; Smith, L.K. Exploring the undulating plateau: The future of global oil supply. Philos. Trans. R Soc. A Math Phys. Eng. Sci. 2014, 372, 20120491. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Mediavilla, M.; de Castro, C.; Carpintero, Ó.; Miguel, L.J. More growth? An unfeasible option to overcome critical energy constraints and climate change. Sustain. Sci. 2015, 10, 397–411. [Google Scholar] [CrossRef]
- de Blas, I.; Mediavilla, M.; Capellán-Pérez, I.; Duce, C. The limits of transport decarbonization under the current growth paradigm. Energy Strateg. Rev. 2020, 32, 100543. [Google Scholar] [CrossRef]
- Chavez-Rodriguez, M.F.; Carvajal, P.E.; Martinez Jaramillo, J.E.; Egüez, A.; Mahecha, R.E.G.; Schaeffer, R.; Szkloa, A.; Lucenaa, A.F.P.; Aramburo, S.A. Fuel saving strategies in the Andes: Long-term impacts for Peru, Colombia and Ecuador. Energy Strateg. Rev. 2018, 20, 35–48. [Google Scholar] [CrossRef]
- Carvajal, P.E.; Li, F.G.N.; Soria, R.; Cronin, J.; Anandarajah, G.; Mulugetta, Y. Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strateg. Rev. 2019, 23, 86–99. [Google Scholar] [CrossRef]
- Carvajal, P.E.; Li, F.G.N. Challenges for hydropower-based nationally determined contributions: A case study for Ecuador. Clim. Policy 2019, 19, 974–987. [Google Scholar] [CrossRef]
- Instituto Nacional de Eficiencia Energética y Energías Renovables I. Escenarios de Prospectiva Energética para Ecuador a 2050. Quito-Ecuador: INER; 2016. Available online: https://www.researchgate.net/publication/323074582_Escenarios_de_prospectiva_energetica_para_Ecuador_a_2050 (accessed on 16 June 2022).
- Espinoza, V.S.; Guayanlema, V.; Martínez-Gómez, J. Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model. Int. J. Energy Econ. Policy 2018, 8, 42–54. [Google Scholar]
- Castro Verdezoto, P.L.; Vidoza, J.A.; Gallo, W.L.R. Analysis and projection of energy consumption in Ecuador: Energy efficiency policies in the transportation sector. Energy Policy 2019, 134, 110948. [Google Scholar] [CrossRef]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Naranjo-Silva, S.; Escobar-Segovia, K. Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application. Sustainability 2020, 12, 472. [Google Scholar] [CrossRef]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Valencia-Chapi, R. Long-Term Electricity Supply and Demand Forecast (2018–2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador. Sustainability 2019, 11, 5316. [Google Scholar] [CrossRef]
- Arroyo, M.F.R.; Miguel, L.J. The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador. Energies 2020, 13, 3883. [Google Scholar] [CrossRef]
- Martínez, J.; Martí-Herrero, J.; Villacís, S.; Riofrio, A.J.; Vaca, D. Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador. Energy Policy 2017, 107, 182–187. [Google Scholar] [CrossRef]
- Villamar, D.; Soria, R.; Rochedo, P.; Szklo, A.; Imperio, M.; Carvajal, P.; Schaeffer, R. Long-term deep decarbonisation pathways for Ecuador: Insights from an integrated assessment model. Energy Strateg. Rev. 2021, 35, 100637. [Google Scholar] [CrossRef]
- Manley, D.; Cust, J.F.; Cecchinato, G. Stranded Nations? The Climate Policy Implications for Fossil Fuel-Rich Developing Countries. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Ministerio de Energía y Recursos Naturales No Renovables M. Plan Maestro de Electricidad 2018-2027 2020:143. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2020/01/4.-EXPANSION-DE-LA-GENERACION.pdf (accessed on 16 June 2022).
- Ministerio de Electricidad y Energía Renovable, M. Atlas Bioenergético del Ecuador 2014:87-95,129-140,149. Available online: https://www.ariae.org/servicio-documental/atlas-bionergetico-de-la-republica-del-ecuador (accessed on 16 June 2022).
- Organización Latinoamericana de Energía, O. Análisis de los Impactos de la Pandemia del COVID-19 Sobre el Sector Energético de América Latina y el Caribe. Quito: OLADE; 2020. Available online: https://biblioteca.olade.org/opac-tmpl/Documentos/old0452.pdf (accessed on 17 June 2022).
- Ministerio de Energía y Recursos Naturales No Renovables M. Balance Energético Nacional 2020 2021. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2021/09/Balance-Energe%CC%81tico-Nacional-2020-Web.pdf (accessed on 16 June 2022).
- Espinoza, V.S.; Fontalvo, J.; Martí-Herrero, J.; Ramírez, P.; Capellán-Pérez, I. Future oil extraction in Ecua dor using a Hubbert approach. Energy 2019, 182, 520–534. [Google Scholar] [CrossRef]
- Administration, U.S.E.I. Ecuador: Analysis n.d. Available online: https://www.eia.gov/international/analysis/country/ECU (accessed on 14 January 2022).
- MERNNR M de E y RNNR. Informe Anual del Potencial Hidrocarburífero del Ecuador 2019 2020. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2020/09/Resumen-Infor.P..Hidro-Pa%C3%ADs-2019.-Revi1C.Ruiz_.1.pdf (accessed on 16 June 2022).
- BCE BC del E. Evolución de la Balanza Comercial Enero-Diciembre 2020. 2021. Available online: https://contenido.bce.fin.ec/documentos/Estadisticas/SectorExterno/BalanzaPagos/balanzaComercial/ebc202102.pdf (accessed on 17 June 2022).
- BCE BC del E. Cuentas Nacionales Anuales 2021. Available online: https://contenido.bce.fin.ec/documentos/Administracion/bi_menuCNAde_f.html (accessed on 17 June 2022).
- Agencia de Regulación y Control de la Electricidad A. Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano 2017 2018:7–9. Available online: https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2020/08/estadistica%20reducida.pdf (accessed on 17 June 2022).
- Program ESMA. Global Photovoltaic Power Potential by Country; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Jara Alvear, J. Solar Photovoltaic Potential to Complement Hydropower in Ecuador: A GIS-Based Framework of Analysis. Master’s Thesis, Lund University, Lund, Sweden, 2018. [Google Scholar]
- Ministerio de Energía y Recursos Naturales No Renovables M. Plan Maestro de Electricidad 2018-2027 2020:150,151. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2020/01/4.-EXPANSION-DE-LA-GENERACION.pdf (accessed on 16 June 2022).
- Espinoza, V.S.; Fontalvo, J.; Martí-Herrero, J.; Miguel, L.J.; Mediavilla, M. Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable? Energy 2022, 259, 124963. [Google Scholar] [CrossRef]
- Capellán Pérez, I.; Mediavilla, M.; de Castro, C.; Carpintero, Ó.; Miguel, L.J. Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 2014, 77, 641–666. [Google Scholar] [CrossRef]
- Organización Latinoamericana de Energía O. Manual de Planificación Energética 2017:183,184. Available online: https://www.olade.org/wp-content/uploads/2021/03/Manual_Planificacion_Energetica_Espanol_Final22-05-2017.pdf (accessed on 17 June 2022).
- International Energy Agency IEA. Energy Transitions Indicators 2019. Available online: https://www.iea.org/articles/energy-transitions-indicators (accessed on 17 June 2022).
- International Energy Agency IEA. World Energy Model; IEA: Paris, France, 2020; Available online: https://www.iea.org/reports/world-energy-model (accessed on 17 June 2022).
- FES-Ecuador. Laboratorio de Transición Energética 2017. Available online: http://www.fes-ecuador.org/news-list/e/laboratorio-de-transicion-energetica/ (accessed on 30 June 2021).
- Noboa, E.; Upham, P. Energy policy and transdisciplinary transition management arenas in illiberal democracies: A conceptual framework. Energy Res. Soc. Sci. 2018, 46, 114–124. [Google Scholar] [CrossRef]
- Ministerio de Electricidad y Energía Renovable M. Plan Nacional de Eficiencia Energética 2016-2035 2017:59. Available online: https://drive.google.com/file/d/1dBDzwH87S7mmR0Gz1tc73WxaCJ8WvnM1/view (accessed on 17 June 2022).
- Secretaría de Hidrocarburos S. Informe Anual del Potencial Hidrocarburífero del Ecuador 2017 2018:17,80. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2019/11/Informe-Anual-del-Potencial-Hidrocarburi%CC%81fero-del-Ecuador-2018.pdf (accessed on 17 June 2022).
- Ministerio de Energía y Recursos Naturales No Renovables M. Balance Energético Nacional 2017 2018:33. Available online: https://issuu.com/revistavirtualmrnnr/docs/balance_energe_tico_nacional_2017 (accessed on 17 June 2022).
- Agencia de Regulación y Control de la Electricidad A. Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano 2018 2019:7–9. Available online: https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2020/08/Estad%C3%ADsticaAnualMultianual2018.pdf (accessed on 17 June 2022).
- Ministerio de Energía y Recursos Naturales No Renovables M. Balance Energético Nacional 2017 2018:99. Available online: https://issuu.com/revistavirtualmrnnr/docs/balance_energe_tico_nacional_2017 (accessed on 17 June 2022).
- Ministerio de Electricidad y Energía Renovable M. Plan Nacional de Eficiencia Energética 2016-2035 2017:27. Available online: https://drive.google.com/file/d/1dBDzwH87S7mmR0Gz1tc73WxaCJ8WvnM1/view (accessed on 17 June 2022).
- Asamblea Nacional del Ecuador. Ley Orgánica de Eficiencia Energética n.d. Available online: www.registroficial.gob.ec (accessed on 25 May 2022).
- Presidencia de la República del Ecuador. Decretos 675. Dispónese que la Gasolina ECOPAÍS Estará Compuesta por un Porcentaje de Hasta el 10% de Bioetanol Anhidro, Grado Carburante, y la Diferencia por Naftas Necesarias para Alcanzar el Número de Octanos que Establece la Correspondiente Norma INEN n.d. Available online: https://vlex.ec/vid/disponese-gasolina-ecopais-compuesta-583918334 (accessed on 25 May 2022).
- Kermeli, K.; Graus, W.H.J.; Worrell, E. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector. Energy Effic. 2014, 7, 987–1011. [Google Scholar] [CrossRef]
- Graus, W.; Blomen, E.; Worrell, E. Global energy efficiency improvement in the long term: A demand- and supply-side perspective. Energy Effic. 2011, 4, 435–463. [Google Scholar] [CrossRef]
- International Energy Agency IEA. World Energy Oulook 2019; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Van de Graaf, T.; Verbruggen, A. The oil endgame: Strategies of oil exporters in a carbon-constrained world. Env. Sci. Policy 2015, 54, 456–462. [Google Scholar] [CrossRef]
- International Energy Agency IEA. Global EV Policy Explorer Electric Vehicle Deployment Policies and Measures. 2021. Available online: https://www.iea.org/articles/global-ev-policy-explorer (accessed on 17 June 2022).
- Lah, O.; Fulton, L.; Arioli, M. Decarbonization Scenarios for Transport and the Role of Urban Mobility. Sustain. Urban Mobil Pathw. Policies Inst. Coalit. Low Carbon Transp. Emerg. Ctries 2019, 65–80. [Google Scholar] [CrossRef]
- International Energy Agency IEA. Global EV Outlook 2020 Entering the Decade of Electric Drive? 2020. Available online: https://www.iea.org/reports/global-ev-outlook-2020 (accessed on 17 June 2022).
- IEA. Energy Transitions—Topics—IEA 2021. Available online: https://www.iea.org/topics/energy-transitions (accessed on 17 June 2022).
- Arslan-Ayaydin, Ö.; Khagleeva, I. Geopolitical Market Concentration (GMC) Risk of Turkish Crude Oil and Natural Gas Imports; Springer: Berlin/Heidelberg, Germany, 2014; pp. 103–117. [Google Scholar]
- Meléndez, Á. Ecuador Has ‘World Class’ Deposits, But Mining Sector Faces Challenges to Growth n.d. Available online: https://www.bloomberglinea.com/2022/01/11/ecuador-has-world-class-deposits-but-mining-sector-faces-challenges-to-growth/ (accessed on 10 September 2022).
- Soria, R.; Caiza, G.; Cartuche, N.; López-Villada, J.; Ordoñez, F. Market potential of linear Fresnel collectors for solar heat industrial process in Latin-America-A case study in Ecuador. AIP Conf. Proc. 2020, 2303, 120003. [Google Scholar] [CrossRef]
- Kruyt, B.; van Vuuren, D.P.; de Vries, H.J.M.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Jansen, J.C.; van Arkel, W.G.; Boots, M.G. Designing Indicators of Long-Term Energy Supply Security 2004. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:35036141 (accessed on 17 June 2022).
- Grubb, M.; Butler, L.; Twomey, P. Diversity and security in UK electricity generation: The influence of low-carbon objectives. Energy Policy 2006, 34, 4050–4062. [Google Scholar] [CrossRef]
- Gupta, E. Oil vulnerability index of oil-importing countries. Energy Policy 2008, 36, 1195–1211. [Google Scholar] [CrossRef]
- Martchamadol, J.; Kumar, S. An aggregated energy security performance indicator. Appl. Energy 2013, 103, 653–670. [Google Scholar] [CrossRef]
- Martchamadol, J.; Kumar, S. The Aggregated Energy Security Performance Indicator (AESPI) at national and provincial level. Appl. Energy 2014, 127, 219–238. [Google Scholar] [CrossRef]
Storyline | Scenario | Description |
---|---|---|
BAU | BAU_2P | This scenario follows current trends. It considers a national oil availability of 7800 MBbl. |
BAU_O | Similar to BAU_2P scenario but considers national oil availability of 10,700 MBbl | |
Conservative Energy Transition | CEET_2P | This scenario includes policies that will seek to reduce dependency on fossil fuels. Targets are moderate. |
CEET_O | Similar to CEET_2P scenario but considers national oil availability of 10,700 MBbl | |
Ambitious Energy Transition | MEET_2P | This is a disruptive scenario that implements a strong, proactive energy transition. |
MEET_O | Similar to MEET_2P scenario but considers national oil availability of 10,700 MBbl |
Sector | Parameter | Scenarios | ||
---|---|---|---|---|
BAU | CEET | MEET | ||
Transport | Share Hybrid Low Duty | Will follow current trends | 20% by 2050 | 30% by 2050 |
Share Electric Low Duty | 18% by 2050 | 28% by 2050 | ||
Share Hybrid Heavy Duty | 5% by 2050 | 15% by 2050 | ||
Share Nat. Gas Heavy Duty | 20% by 2050 | 40% by 2050 | ||
Share Electric Bus | 35% by 2050 | 85% by 2050 | ||
Share Hybrid VAN | 10% by 2050 | 30% by 2050 | ||
Share Electric VAN | 20% by 2050 | 40% by 2050 | ||
Transport Households | Share 2 wheelers | Will follow current trends | 55% by 2050 a | 60% by 2050 a |
Share Hybrid 4 wheelers | 20% by 2050 b | 30% by 2050 b | ||
Share Electric 4 wheelers | 18% by 2050 b | 28% by 2050 b | ||
Share Electric 2 wheelers | 30% by 2050 c | 60% by 2050 c | ||
Share Sustainable Mobility | 10% by 2050 b | 20% by 2050 b | ||
Households | Energy Intensity Improvement | Will follow current trends | Electricity with slow exponential improvement at max yearly rate of 2% | Electricity with fast exponential improvement at max yearly rate of 4% |
Source Substitution | No substitution | LPG with electricity. Slow exponential substitution at max yearly rate of 1.1% | LPG with electricity. Fast exponential substitution at max yearly rate of 3% | |
Industry | Energy Intensity Improvement | Will follow current trends | Natural Gas, electricity, LPG, Diesel, and Fuel Oil slow exponential improvement at max yearly rate of 9% | Natural Gas, electricity, LPG, Diesel, and Fuel Oil fast exponential improvement at max yearly rate of 9% |
Source Substitution | No substitution | LPG with Natural Gas (30%), Electricity (70%) | LPG with Electricity (70%), and biomass (30%) | |
Slow exponential substitution at max yearly rate of 16% | Fast exponential substitution at max yearly rate of 16% | |||
Diesel with Natural Gas (20%), Electricity (80%) | Diesel with Electricity (80%), and biomass (20%) | |||
Slow exponential substitution at max yearly rate of 13% | Fast exponential substitution at max yearly rate of 13% | |||
Fuel Oil with Natural Gas (20%), Electricity (80%) | Fuel Oil with Natural Gas (20%), Electricity (80%) | |||
Slow exponential substitution at max yearly rate of 12% | Fast exponential substitution at max yearly rate of 12% | |||
Commercial-Public | Energy Intensity Improvement | Will follow current trends | Electricity, LPG, Gasoline, Diesel, and Fuel Oil slow exponential improvement at max yearly rate of 4% | Electricity, LPG, Gasoline, Diesel, and Fuel Oil fast exponential improvement at max yearly rate of 4% |
Source Substitution | No substitution | LPG with Electricity | LPG with Electricity | |
Slow exponential substitution at max yearly rate of 4% | Fast exponential substitution at max yearly rate of 4% | |||
Diesel with Electricity | Diesel with Electricity | |||
Slow exponential substitution at max yearly rate of 4% | Fast exponential substitution at max yearly rate of 4% | |||
Fuel Oil with Electricity | Fuel Oil with Electricity | |||
Slow exponential substitution at max yearly rate of 4% | Fast exponential substitution at max yearly rate of 4% | |||
Others | Energy Intensity Improvement | Will follow current trends | Electricity, LPG, Gasoline, Diesel, and Fuel Oil slow exponential improvement at a max yearly rate of 7% | Electricity, LPG, Gasoline, Diesel, and Fuel Oil fast exponential improvement at a max yearly rate of 7% |
Source Substitution | No substitution | LPG with Electricity | LPG with Electricity | |
Slow exponential substitution at max yearly rate of 4% | Fast exponential substitution at max yearly rate of 10% | |||
Diesel with Electricity | Diesel with Electricity | |||
Slow exponential substitution at max yearly rate of 2% | Fast exponential substitution at max yearly rate of 6% | |||
Fuel Oil with Electricity | Fuel Oil with Electricity | |||
Slow exponential substitution at max yearly rate of 1% | Fast exponential substitution at max yearly rate of 3% | |||
Power Capacity | Planned Installed Capacity for Renewables up to 2027 | Base Case Electricity Master Plan [52] | Productive Matrix Case Electricity Master Plan [52] | Productive Matrix Case Electricity Master Plan [52] |
Growth Rate of Installed Capacity for Renewables from 2027 | Hydro: 7.8% | Hydro: 9.4% | Hydro: 13.5% | |
Wind: 30.8% | Wind: 37% | Wind: 53.2% | ||
Solar PV: 69% | Solar PV: 83% | Solar PV: 119% | ||
Geothermal: 0% | Geothermal: 0% | Geothermal: 0% | ||
Biomass: 6.1% | Biomass: 7.3% | Biomass: 10.5% | ||
Biogas: 11.3% | Biogas: 13.6% | Biogas: 19.6% | ||
Renewables Potential | Hydro | Hydro: 22,000 Mwe [11] | Hydro: 22,000 Mwe [11] | Hydro: 22,000 Mwe [11] |
Wind | Wind: 884 Mwe [11] | Wind: 884 Mwe [11] | Wind: 884 Mwe [11] | |
Solar PV | Solar PV: 16,637 MWp [51] | Solar PV: 16,637 MWp [51] | Solar PV: 16,637 MWp [51] | |
Geothermal | Geothermal: 2700 MWth [11] | Geothermal: 2700 MWth [11] | Geothermal: 2700 MWth [11] | |
Biomass | Biomass: 92,233 TJ/Year [41] | Biomass: 230,584 TJ/Year [41] | Biomass: 230,584 TJ/Year [41] | |
Biogas | Biogas: 223.4 TJ/Year [41] | Biogas: 223.4 TJ/Year [41] | Biogas: 223.4 TJ/Year [41] | |
Oil | Oil Export Policy | Maximum exports | Reduced exports d | Oil sovereignty e |
Fossil Fuels | Fossil Fuels Prices | Stated Policies [57] | Sustainable Development [57] | Sustainable Development [57] |
Indicator | Year | EEDEC 1 BAU_2P | EEDEC 1 BAU_O | EEDEC 1 CEET_2P | EEDEC 1 CEET_O | EEDEC 1 MEET_2P | EEDEC 1 MEET_O | MEDEAS Ref [23] |
---|---|---|---|---|---|---|---|---|
GDP per capita [USD1995/person] | 2020 | 2819 | 2819 | 2819 | 2819 | 2819 | 2819 | 7300 |
2025 | 3044 | 3044 | 3044 | 3044 | 3044 | 3044 | 7400 | |
2030 | 3281 | 3281 | 3281 | 3281 | 3281 | 3281 | 7500 | |
2035 | 3561 | 3561 | 3561 | 3561 | 3561 | 3561 | 7700 | |
2040 | 3602 | 3748 | 3892 | 3892 | 3892 | 3892 | 7600 | |
2045 | 3511 | 3725 | 4013 | 4281 | 4281 | 4249 | 7500 | |
2050 | 3421 | 3801 | 4200 | 4480 | 4454 | 4739 | 7400 | |
TFEC per capita [GJ/person] | 2020 | 29 | 31 | 31 | 31 | 31 | 31 | 55 |
2025 | 31 | 29 | 29 | 29 | 29 | 29 | 54 | |
2030 | 33 | 31 | 31 | 31 | 31 | 31 | 53 | |
2035 | 36 | 33 | 33 | 33 | 32 | 32 | 52 | |
2040 | 37 | 36 | 36 | 36 | 32 | 32 | 51 | |
2045 | 34 | 38 | 38 | 38 | 33 | 33 | 50 | |
2050 | 31 | 37 | 35 | 39 | 34 | 33 | 49 |
Scenario | |||||||||
---|---|---|---|---|---|---|---|---|---|
Indicator | Year | BAU_2P | BAU_O | CEET_2P | CEET_O | MEET_2P | MEET_O | Stated Policies IEA [56,75] | Sustainable Development IEA [56,75] |
Final Energy Carbon Intensity [TON CO2eq/TJ] | 2020 | 58.5 | 58.5 | 58.5 | 58.5 | 58.5 | 58.5 | ||
2025 | 56.6 | 56.6 | 56.6 | 56.6 | 56.6 | 56.6 | |||
2030 | 55.4 | 55.3 | 55.2 | 55.1 | 55.4 | 55.4 | |||
2035 | 54.2 | 54.2 | 53.5 | 53.4 | 53.6 | 53.6 | |||
2040 | 52.5 | 52.8 | 52.3 | 52.3 | 51.0 | 51.0 | 66.8 [56] | 40.6 [56] | |
2045 | 49.0 | 49.6 | 50.7 | 51.3 | 49.4 | 49.5 | |||
2050 | 44.0 | 45.8 | 49.0 | 49.8 | 48.4 | 48.6 | |||
Power Carbon Intensity [TON CO2eq/GWh] | 2020 | 192.6 | 192.6 | 192.6 | 192.6 | 193.0 | 193.0 | ||
2025 | 234.0 | 234.0 | 217.0 | 217.0 | 217.4 | 217.4 | |||
2030 | 83.0 | 83.0 | 83.2 | 83.2 | 83.7 | 83.7 | |||
2035 | 104.6 | 105.9 | 129.3 | 132.9 | 82.0 | 82.1 | |||
2040 | 178.7 | 197.0 | 173.6 | 174.7 | 140.3 | 139.7 | |||
2045 | 194.8 | 206.4 | 98.6 | 139.8 | 168.2 | 142.7 | |||
2050 | 178.5 | 198.0 | 83.4 | 83.0 | 80.9 | 126.7 | 225.6 [75] | 17.0 [75] | |
Electricity Share in final demand [%] | 2020 | 17.98 | 17.98 | 17.98 | 17.98 | 17.98 | 17.98 | ||
2025 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 | 20.06 | |||
2030 | 21.35 | 21.39 | 21.54 | 21.65 | 21.12 | 21.13 | |||
2035 | 22.57 | 22.62 | 23.27 | 23.42 | 22.46 | 22.46 | |||
2040 | 24.86 | 24.34 | 24.13 | 24.25 | 24.78 | 24.76 | 27 [56] | 33 [56] | |
2045 | 29.78 | 28.85 | 25.66 | 24.76 | 26.39 | 26.28 | |||
2050 | 36.96 | 34.29 | 27.11 | 25.90 | 27.68 | 27.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza, V.S.; Fontalvo, J.; Ramírez, P.; Martí-Herrero, J.; Mediavilla, M. Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador. Energies 2022, 15, 6938. https://doi.org/10.3390/en15196938
Espinoza VS, Fontalvo J, Ramírez P, Martí-Herrero J, Mediavilla M. Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador. Energies. 2022; 15(19):6938. https://doi.org/10.3390/en15196938
Chicago/Turabian StyleEspinoza, Vicente Sebastian, Javier Fontalvo, Paola Ramírez, Jaime Martí-Herrero, and Margarita Mediavilla. 2022. "Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador" Energies 15, no. 19: 6938. https://doi.org/10.3390/en15196938
APA StyleEspinoza, V. S., Fontalvo, J., Ramírez, P., Martí-Herrero, J., & Mediavilla, M. (2022). Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador. Energies, 15(19), 6938. https://doi.org/10.3390/en15196938